English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 技術(shù)文章 > 美國(guó)dpowerslab鳥類能量代謝研究案例

美國(guó)dpowerslab鳥類能量代謝研究案例

瀏覽次數(shù):6327 發(fā)布日期:2016-1-13  來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

開放式呼吸計(jì)(open-flow respirometry)是測(cè)量生物能量代謝比較常用的方法,受到世界各國(guó)動(dòng)物生理生態(tài)學(xué)、生物醫(yī)學(xué)等領(lǐng)域科學(xué)家的長(zhǎng)久青睞。

北京易科泰生態(tài)技術(shù)有限公司代理的美國(guó)Sable Systems International品牌是世界上專業(yè)的動(dòng)物能量代謝測(cè)量技術(shù)公司,其產(chǎn)品以高靈敏度、高分辨率等性能應(yīng)用于很多特殊呼吸模式的野生動(dòng)物、各種實(shí)驗(yàn)動(dòng)物及經(jīng)濟(jì)動(dòng)物等生物,如具有間歇式呼吸的昆蟲、爆發(fā)式呼吸的潛水動(dòng)物、特定行為代謝的野生及實(shí)驗(yàn)動(dòng)物等,并有大量的研究文獻(xiàn)及實(shí)驗(yàn)方法、案例供參考。

本案例僅以美國(guó)喬治?怂勾髮W(xué)知名的動(dòng)物能量學(xué)實(shí)驗(yàn)室Powers Research Lab ~ Studies in Animal Energetics (http://www.dpowerslab.com/) 研究蜂鳥、蛇及蜥蜴為案例介紹動(dòng)物能量學(xué)測(cè)量技術(shù),包括針對(duì)不同的研究動(dòng)物,選擇不同的SSI呼吸代謝監(jiān)測(cè)模塊,以及特殊呼吸室的制作。

蜂鳥是世界上最小的鳥,體重甚至不足2克,能夠通過(guò)快速拍打翅膀而懸停在空中,也是是唯一可以向后飛的鳥。為維持極速飛行、上下翻飛、高速俯沖等日常活動(dòng),蜂鳥的能量消耗及食物利用效率是非常驚人的。

作為動(dòng)物能量學(xué)研究特別是蜂鳥代謝研究的權(quán)威機(jī)構(gòu),dpowerslab實(shí)驗(yàn)室選購(gòu)了不同的SSI動(dòng)物呼吸代謝監(jiān)測(cè)系統(tǒng)以滿足不同動(dòng)物研究的需要,如FOXBOX-C便攜式氣體分析儀,可直接帶到野外測(cè)量動(dòng)物的代謝率;Field Metabolic Systems便攜式動(dòng)物代謝儀,可監(jiān)測(cè)動(dòng)物能量代謝及水代謝;SSI模塊式動(dòng)物呼吸代謝測(cè)量系統(tǒng),可根據(jù)研究目的,選擇不同的差分式氧氣分析儀、高靈敏度及分辨率的溫度檢測(cè)儀等模塊,研究動(dòng)物在不同行為狀態(tài)時(shí)的能量消耗。呼吸室的靈活性選擇使得SSI便攜式、模塊化代謝測(cè)量系統(tǒng)可以研究從單只果蠅到大型鯨魚的能量學(xué)研究。

以下為dpowerslab實(shí)驗(yàn)室用于蜂鳥、蛇類及蜥蜴的SSI便攜式及模塊式動(dòng)物代謝測(cè)量系統(tǒng)的圖片展示:

FOXBOX-C便攜式氣體分析儀(研究者:Luke Andrew)

使用實(shí)時(shí)代謝監(jiān)測(cè)儀研究自由活動(dòng)鳥類懸停代謝率

FMS便攜式代謝測(cè)量,F(xiàn)OXBOX的升級(jí)版,用于動(dòng)物能量投入與水代謝監(jiān)測(cè)

蜂鳥高速俯沖等行為與能量消耗

 dpowerslab實(shí)驗(yàn)室最高級(jí)別的代謝監(jiān)測(cè)分析儀(負(fù)責(zé)人:Kyle Maki)

dpowerslab實(shí)驗(yàn)室選配該系統(tǒng)用來(lái)研究未知?dú)饬鲗?duì)星蜂鳥懸停能量學(xué)的影響

dpowerslab實(shí)驗(yàn)室動(dòng)物代謝監(jiān)測(cè)系統(tǒng)(研究者:Luke Andrew

定制的蜂鳥呼吸室

呼吸室內(nèi)的蜂鳥

 蜂鳥懸停在空中的呼吸室

糖水及蜂蜜放在蜂鳥喂食器(氣候變化與蜂蜜、蜂鳥花蜜代謝研究)


Dpowerslab研究者正在制作蛇類代謝監(jiān)測(cè)呼吸室(研究者:Paige Copenhaver

需要說(shuō)明的是,Sable Systems International動(dòng)物呼吸代謝監(jiān)測(cè)系統(tǒng)是世界上動(dòng)物能量代謝研究使用最普遍的儀器,也是國(guó)際動(dòng)物生理學(xué)權(quán)威專家一致推薦的產(chǎn)品。

如果您對(duì)測(cè)量特定物種的能量代謝技術(shù)感興趣,請(qǐng)致電北京易科泰生態(tài)技術(shù)有限公司010-82611572,我們竭誠(chéng)為您定制適合您科學(xué)研究的最佳方案。  

2015年部分參考文獻(xiàn):

Baldo M B, Antenucci C D, Luna F. Effect of ambient temperature on evaporative water loss in the subterranean rodent Ctenomys talarum[J]. Journal of thermal biology, 2015, 53: 113-118.

Carey C S, Boyles J G. Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats[J]. The Journal of experimental biology, 2015: jeb. 118950.

Cortés P A, Petit M, Lewden A, et al. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine[J]. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2015, 323(3): 179-190.

DeMambro V E, Le P T, Guntur A R, et al. Igfbp2 deletion in ovariectomized mice enhances energy expenditure but accelerates bone loss[J]. Endocrinology, 2015, 156(11): 4129-4140.

Friesen C R, Powers D R, Copenhaver P E, et al. Size dependence in non-sperm ejaculate production is reflected in daily energy expenditure and resting metabolic rate[J]. The Journal of experimental biology, 2015, 218(9): 1410-1418.

Gavrilov V M. The stoichiometric approach in determining total evaporative water loss and the relationship between evaporative and non-evaporative heat loss in two resting bird species: passerine and non-passerine[J]. Avian Research, 2015, 6(1): 1.

Goundie E T, Rosen D A S, Trites A W. Low prey abundance leads to less efficient foraging behavior in Steller sea lions[J]. Journal of Experimental Marine Biology and Ecology, 2015, 470: 70-77.

Levin E, Plotnik B, Amichai E, et al. Subtropical mouse-tailed bats use geothermally heated caves for winter hibernation[J]. Proceedings of the Royal Society of London B: Biological Sciences, 2015, 282(1804): 20142781.

Londoño G A, Chappell M A, Castañeda M R, et al. Basal metabolism in tropical birds: latitude, altitude, and the ‘pace of life’[J]. Functional Ecology, 2015, 29(3): 338-346.

Mathot K J, Nicolaus M, Araya‐Ajoy Y G, et al. Does metabolic rate predict risk‐taking behaviour? A field experiment in a wild passerine bird[J]. Functional Ecology, 2015, 29(2): 239-249.

Motyl K J, DeMambro V E, Barlow D, et al. Propranolol attenuates risperidone-induced trabecular bone loss in female mice[J]. Endocrinology, 2015: en. 2015-1099.

Powers D R, Getsinger P W, Tobalske B W, et al. Respiratory evaporative water loss during hovering and forward flight in hummingbirds[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 161(2): 279-285.

Schaeffer P J, Komer M C, Corder K R. Energy savings due to the use of shallow body temperature reduction in overwintering Northern Cardinals[J]. Animal Biotelemetry, 2015, 3(1): 1.

Shipley J R, Gu D Y, Salzman T C, et al. Heterothermic flexibility allows energetic savings in a small tropical swift: The Silver-rumped Spinetail (Rhaphidura leucopygialis)[J]. The Auk, 2015, 132(3): 697-703.

Stawski C, Koteja P, Sadowska E T, et al. Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 180: 51-56.

Stuber E F, Mathot K J, Kempenaers B, et al. Sex-specific association between sleep and basal metabolic rate in great tits[J]. Animal Behaviour, 2015, 109: 15-22.

Thienel M, Canals M, Bozinovic F, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 183: 126-130.

Thompson L J, Brown M, Downs C T. Seasonal metabolic variation over two years in an Afrotropical passerine bird[J]. Journal of Thermal Biology, 2015.

Thompson L J, Brown M, Downs C T. The effects of long-term captivity on the metabolic parameters of a small Afrotropical bird[J]. Journal of Comparative Physiology B, 2015, 185(3): 343-354.

Trangmar S J, Chiesa S T, Llodio I, et al. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2015, 309(9): H1598-H1607.

Welch K C, Otálora-Ardila A, Flores-Martínez J J. The cost of digestion in the fish-eating myotis (Myotis vivesi)[J]. The Journal of experimental biology, 2015, 218(8): 1180-1187.

Williams T M, Fuiman L A, Davis R W. Locomotion and the Cost of Hunting in Large, Stealthy Marine Carnivores[J]. Integrative and comparative biology, 2015: icv025.

Wolf B, Gilman C. The Burden of Reproduction in Lizards: Changes in Respiratory Physiology Associated with Reduced Lung Volume at the Sevilleta National Wildlife Refuge[J]. 2015.

 

來(lái)源:北京易科泰生態(tài)技術(shù)有限公司
聯(lián)系電話:13718717100
E-mail:sales@eco-tech.com.cn

標(biāo)簽: 鳥類 能量代謝 呼吸
用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com