種子質(zhì)量是植物育種和生產(chǎn)中的一個基礎(chǔ)性和關(guān)鍵性因素,可以通過種子的發(fā)芽率或理化特性來衡量,在農(nóng)業(yè)領(lǐng)域已變得越來越重要。一方面,優(yōu)質(zhì)種子是植物生長的良好開端,預(yù)示著豐收;另一方面,種子質(zhì)量通常與食品質(zhì)量密切相關(guān),如質(zhì)地、風(fēng)味和營養(yǎng)成分。為了滿足消費者的需求,種子在收獲后應(yīng)謹(jǐn)慎加工和儲存。在采收、加工和儲存過程中,需要一種快速、準(zhǔn)確、無損的檢測種子質(zhì)量的方法。高光譜成像作為一種非破壞性、快速的種子質(zhì)量和安全性評價方法,近年來備受關(guān)注。
高光譜成像技術(shù)結(jié)合了光譜技術(shù)和成像技術(shù)的優(yōu)點,可以同時獲取光譜和空間信息。也就是說,它可以同時獲得不均勻樣品的化學(xué)信息和化學(xué)成分的空間分布。高光譜技術(shù)在農(nóng)業(yè)、食品、醫(yī)藥等行業(yè)得到了廣泛的應(yīng)用。高光譜成像技術(shù)在種子行業(yè)的潛在或?qū)嶋H應(yīng)用包括種子活性、活力、缺陷、疾病、凈度檢測,種子成分測定。
本文總結(jié)和分析了高光譜技術(shù)在種子質(zhì)量和安全檢驗方面的發(fā)展,介紹了該技術(shù)在種子分類分級、活性和活力檢測、損傷(缺陷和真菌)檢測、凈度檢測和種子成分測定等方面的能力,綜述了該技術(shù)在種子質(zhì)量檢測和安全檢測中的應(yīng)用,包括分析的光譜范圍、樣品種類、樣品狀態(tài)、樣品數(shù)量、特征(光譜特征、圖像特征、特征提取方法)、信號模式等。
表1高光譜成像應(yīng)用于種子分類和分級的參考文獻(xiàn)摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley, wheat and sorghum |
1 variety of each kind of grain |
Spectra |
PCA |
PWbprediction map and OWc(single kernels) |
– |
Grain topography classification |
– |
Black bean |
3 |
Spectra and image |
SPA, PCA, GLCM |
OW (single kernels) |
PLS-DA, SVM |
Variety classification |
98.33% (PLS-DA) |
Grape seed |
3 varieties, two growth soil |
Spectra |
PCA |
OW (single kernels), PW PCA and prediction map |
GDA |
Assess Stage of maturation of grape seeds |
> 95% |
Grape seed |
3 |
Spectra and image |
PCA |
OW (single kernels) |
SVM |
Variety classification |
94.30% |
Maize |
2 (transgenic and non-transgenic) |
Spectra |
PCA, CARS |
PW PCA and prediction map, OW (single kernels) |
PLS-DA, SVM |
Transgenic and non-transgenic classification |
99.5% (PLS-DA) |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
91.50% |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
94.80% |
Maize |
4 varieties, 3 crop years |
Spectra |
no |
OW (single kernels) |
LS-SVM |
Variety classification |
94.40% |
Maize |
17 |
Spectra and image |
PCA, SPA, GLCM, MDS |
OW (single kernels) |
LS-SVM |
Variety classification |
94.40% |
Maize |
18 |
Spectra and image |
PCA |
OW (single kernels), PW PCA and prediction map |
PLS-DA |
Textural, vitreous, floury and the third type endosperm |
85% (PLS-DA) |
Maize |
3 hardness |
Spectra and image |
PCA |
PW PCA and prediction map, OW (single kernels) |
PLS-DA |
Hardness classification |
97% (PLS-DA) |
Maize |
14 |
Spectra |
joint skewness-based wavelength selection |
OW (single kernels) |
LS-SVM |
Variety classification |
98.18% |
Maize |
3 |
Spectra and image |
PCA |
OW (single kernels) |
SVM, RBFNN |
Variety classification |
93.85% (RBFNN) |
Maize |
6 |
Spectra and image |
PCA, KPCA, GLCM |
OW (bulk samples) |
LS-SVM, BPNN, PCA, KPCs |
Classes classification |
98.89% (PCA-GLCM-LS-SVM) |
Rice |
4 origins |
Spectra and image |
PCA, GLCM |
OW (single kernels) |
SVM |
Variety classification |
91.67% |
Rice |
4 |
Spectra |
PLS-DA, PCA |
PW PCA and OW (bulk samples) |
KNN, PLS-DA, SIMCA, SVM, RF |
Seed cultivars classification |
100% (SIMCA, SVM, and RF) |
Soybean, maize and rice |
3 of each kind of seed |
Spectra |
neighborhood mutual information |
OW (single kernels) |
ELM, RF |
Variety classification |
100% (ELM) |
Waxy corn |
4 |
Spectra and image |
SPA, GLCM |
OW (single kernels) |
PLS-DA, SVM |
Variety classification |
98.2% (SVM) |
Wheat |
8 |
Image |
WT, STEPDISC, PCA |
PW and OW (bulk samples) |
BPNN, LDA, QDA |
Classes classification |
99.1% (LDA) |
Wheat |
8 |
Spectra |
STEPDISC |
OW (bulk samples) |
LDA, QDA, Standard BPNN, Wardnet BPNN |
Variety classification |
94–100% (LDA) |
Wheat |
5 |
Spectra |
STEPDISC |
PW PCA and OW (bulk samples) |
LDA, QDA |
Classes classification |
90–100% (LDA) |
表2 高光譜成像應(yīng)用于種子活力和活力檢測的參考文獻(xiàn)摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley |
1 variety, 8 treatments |
Spectra |
PCA, MNF |
PWbprediction map and OWc(single kernels) |
Maximum likelihood multinomial, regression classifier |
Germination level detection |
97% when single kernels grouped into the three categories |
Corn |
3 varieties, 2 treatments |
Spectra |
No |
OW (single kernels) |
PLS-DA |
Viability prediction |
> 95.6% |
Cryptomeria japonica and Chamaecyparis obtuse |
2 treatments of each kind of seed |
Spectra |
No |
OW (single kernels) |
Spectral index |
Viability prediction |
98.30% |
Cucumber |
1 variety, 2 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Viability prediction |
100% |
Muskmelon |
1 variety, 4 treatments |
Spectra |
VIP, SR, and SMC |
OW (single kernels) |
PLS-DA |
Viability prediction |
94.60% |
Norway spruce |
1 variety, 3 treatments |
Spectra and image |
L1-regularized logistic regression based feature selection |
OW (single kernels) |
SVM |
Viability prediction |
> 93% |
Pepper |
1 variety, 2 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Germination level detection |
> 85% |
Tree seeds |
3 varieties, 8 treatments |
Spectra |
LDA |
OW (single kernels) |
LDA |
Germination level detection |
> 79% |
Wheat, barley and sorghum |
B: 3 varieties W: 3 varieties S: 2, varieties 6 treatments |
Spectra |
PCA |
OW (single kernels), PW prediction map |
PLS-DA, PLSR |
Viability prediction |
R = 0.92 (PLS-DA) |
表3 高光譜成像應(yīng)用于種子質(zhì)量缺陷檢測的參考文獻(xiàn)摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Mung bean |
1 variety, 8 treatments |
Spectra and image |
PCA |
OWb(single kernels) |
LDA, QDA |
Insect damage detection |
> 82% |
Soybean |
1 variety, 5 treatments |
Spectra and image |
GLCM |
OW (single kernels) |
LDA, QDA |
Insect damage detection |
99% (QDA) |
Wheat |
1 variety, 4 insect varieties |
Spectra and image |
STEPDISC, GLCM, GLRM, PCA |
OW (single kernels) |
LDA, QDA |
Insect damage detection |
95.3–99.3% |
Wheat |
1 variety, 3 treatments |
Spectra and image |
PCA |
PWcprediction map and OW (single kernels) |
Spectral index |
Seed sprouted detection |
> 90% |
表4 高光譜成像應(yīng)用于種子真菌損傷檢測的參考文獻(xiàn)摘要
Seed |
Varieties |
Features |
Data analysis strategies |
Main application type |
Classification result (highest accuracy) |
||
Spectra/image |
Extraction/selection methods |
Analysis level |
Classification/regression methods |
||||
Barley |
1 variety, 2 fungi |
Spectra and image |
PCA |
PWbprediction map and OWc(single kernels) |
LDA, QDA, MDA |
Fungus (Ochratoxin A and Penicillium) damage detection |
> 82% |
Canola |
1 variety, 2 fungi, |
Spectra and image |
PCA |
OW (single kernels) |
LDA, QDA, MDA |
Fungus (Aspergillus glaucus and Penicilliumspp.) damage detection |
> 90% |
Corn |
3 varieties, 5 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Fungus (Aflatoxin B1) damage detection |
96.90% |
Corn |
1 variety, 3 treatments |
Spectra |
No |
PW spectra |
spectral index |
Fungus (Aflatoxin A. flavus) damage detection |
93% |
Corn |
1 variety, 3 treatments |
Spectra |
PCA |
OW (single kernels), PW PCA |
LS-SVM, KNN |
Fungus (Aflatoxin A. flavus) damage detection |
> 91% (KNN) |
Hick peas, green peas, lentils, pinto beans and kidney beans |
5 different pulses, 2 fungi |
Spectra and image |
PCA |
OW (single kernels), PW PCA |
LDA, QDA |
Fungus (Penicillium commune Thom, C. and A. flavus Link, J.) damage detection |
96%-100% |
Maize |
4 varieties |
Spectra |
PCA |
OW (single kernels), PW prediction map |
SVM, SVR |
Fungus (Aflatoxin B1) damage detection |
R2 = 0.77 |
Maize |
1 variety, 5 treatments |
Spectra |
PCA, FDA |
OW (single kernels), PW PCA |
FDA |
Fungus (Aflatoxin B1) damage detection |
88% |
Maize |
1 variety, 5 treatments |
Spectra |
PCA |
OW (single kernels) |
FDA |
Fungus (Aflatoxin B1) damage detection |
98% |
Maize |
1 variety, 3 treatments |
Spectra |
No |
OW (single kernels), PW prediction map |
PLS-DA |
Fungus (Fusarium) damage detection |
77% (PLS-DA) |
Maize |
1 variety, nine treatments |
Spectra |
PCA, variable importance plots |
OW (single kernels), PW PCA and prediction map |
PLSR |
Fungus damage detection |
R2 = 0.87 |
maize |
1 variety, 2 fungi, 3 treatments |
Spectra |
No |
OW (single kernels) |
discriminant analysis |
Fungus (Toxigenic and atoxigenic A. flavus) damage detection |
94.40% |
Maize |
12 varieties, 4 fungi |
Spectra |
PCA |
OW (bulk samples), PW PCA |
ANOVA, Fisher’s LSD test |
Fungus (Aspergillus strains) damage detection |
Fisher’s LSD test |
Oat50 |
1 variety, 4 treatments |
Spectra |
PLSR |
OW (single kernels), PW prediction map |
PLSR, PLS-LDA |
Fungus (Fusarium) damage detection |
R2 = 0.8 |
Peanut |
1 variety, 2 treatments |
Spectra |
PCA |
OW (single kernels), PW prediction map |
PCA |
Moldy kernel detection |
98.73% |
Peanut |
1 variety, 2 treatments |
Spectra |
ANOVA, NWFE |
OW (single kernels), PW prediction map |
SVM |
Fungus (Aflatoxin) damage detection |
> 94% |
Rice |
1 variety, 6 treatments |
Spectra |
No |
OW (bulk samples) |
SOM, PLSR |
Fungus (Aspergillus) damage detection |
R2 = 0.97 |
Watermelon |
1 variety, 2 treatments |
Spectra |
Intermediate PLS (iPLS) |
OW (single kernels) PW prediction map |
PLS-DA, LS-SVM |
Fungus (Cucumber green mottle mosaic virus) damage detection |
83.3% (LS-SVM) |
Watermelon |
1 variety, 2 treatments |
Spectra |
Intermediate PLS (iPLS) |
OW (single kernels), PW prediction map |
PLS-DA, LS-SVM |
Fungus (Acidovorax citrulli) damage detection |
> 90% |
Wheat |
4 varieties, 2 fungi |
Spectra |
PCA |
OW (single kernels), PW spectra |
LDA |
Fungus (Fusarium) damage detection |
> 91% |
Wheat |
33 varieties, 3 treatments |
Spectra |
No |
OW (single kernels), PW spectra |
spectral index |
Fungus (Fusarium head blight) damage detection |
81% |
Wheat |
1 variety, 3 treatments |
Spectra and image |
PCA, STEPDISC |
OW (single kernels) |
LDA |
Fungus (Fusarium) damage detection |
92% |
Wheat |
1 variety, 3 fungi |
Spectra and image |
STEPDISC, GLCM, GLRM, PCA |
OW (single kernels) |
LDA, QDA, MDA |
Fungus (Penicilliumspp., Aspergillus glaucus group, and Aspergillus niger) damage detection |
> 95% |
Wheat |
3 varieties |
Spectra |
PCA |
OW (bulk, single kernels), PW PCA |
PLS-DA, iPLS-DA |
Fungus (Fusarium) damage detection |
99% |
高光譜成像是一個復(fù)雜的、多學(xué)科的領(lǐng)域,其目的是在不進(jìn)行單調(diào)的樣品制備情況下,同時對多種化學(xué)成分和物理屬性的含量和空間分布進(jìn)行有效和可靠的測量,因此為種子自動分級和缺陷檢測系統(tǒng)的設(shè)計提供了可能。本文概述的各種應(yīng)用表明,在種子分級、活力和活力檢測、缺陷和疾病檢測、清潔度檢測和種子成分測定方面,高光譜成像具有很大的應(yīng)用潛力。可以預(yù)見,采用該技術(shù)的實時種子監(jiān)測系統(tǒng)將在不久的將來滿足現(xiàn)代種子工業(yè)控制和分選系統(tǒng)的需求。
全文閱讀Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.