English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁 > 技術(shù)文章 > 種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

種子質(zhì)量與安全檢驗的高光譜成像研究進(jìn)展

瀏覽次數(shù):4040 發(fā)布日期:2019-8-20  來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)

種子質(zhì)量是植物育種和生產(chǎn)中的一個基礎(chǔ)性和關(guān)鍵性因素,可以通過種子的發(fā)芽率或理化特性來衡量,在農(nóng)業(yè)領(lǐng)域已變得越來越重要。一方面,優(yōu)質(zhì)種子是植物生長的良好開端,預(yù)示著豐收;另一方面,種子質(zhì)量通常與食品質(zhì)量密切相關(guān),如質(zhì)地、風(fēng)味和營養(yǎng)成分。為了滿足消費者的需求,種子在收獲后應(yīng)謹(jǐn)慎加工和儲存。在采收、加工和儲存過程中,需要一種快速、準(zhǔn)確、無損的檢測種子質(zhì)量的方法。高光譜成像作為一種非破壞性、快速的種子質(zhì)量和安全性評價方法,近年來備受關(guān)注。

高光譜成像技術(shù)結(jié)合了光譜技術(shù)和成像技術(shù)的優(yōu)點,可以同時獲取光譜和空間信息。也就是說,它可以同時獲得不均勻樣品的化學(xué)信息和化學(xué)成分的空間分布。高光譜技術(shù)在農(nóng)業(yè)、食品、醫(yī)藥等行業(yè)得到了廣泛的應(yīng)用。高光譜成像技術(shù)在種子行業(yè)的潛在或?qū)嶋H應(yīng)用包括種子活性、活力、缺陷、疾病、凈度檢測,種子成分測定。

本文總結(jié)和分析了高光譜技術(shù)在種子質(zhì)量和安全檢驗方面的發(fā)展,介紹了該技術(shù)在種子分類分級、活性和活力檢測、損傷(缺陷和真菌)檢測、凈度檢測和種子成分測定等方面的能力,綜述了該技術(shù)在種子質(zhì)量檢測和安全檢測中的應(yīng)用,包括分析的光譜范圍、樣品種類、樣品狀態(tài)、樣品數(shù)量、特征(光譜特征、圖像特征、特征提取方法)、信號模式等。

表1高光譜成像應(yīng)用于種子分類和分級的參考文獻(xiàn)摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley, wheat and sorghum

1 variety of each kind of grain

Spectra

PCA

PWbprediction map and OWc(single kernels)

Grain topography classification

Black bean

3

Spectra and image

SPA, PCA, GLCM

OW (single kernels)

PLS-DA, SVM

Variety classification

98.33% (PLS-DA)

Grape seed

3 varieties, two growth soil

Spectra

PCA

OW (single kernels), PW PCA and  prediction map

GDA

Assess Stage of maturation of grape seeds

> 95%

Grape seed

3

Spectra and image

PCA

OW (single kernels)

SVM

Variety classification

94.30%

Maize

2 (transgenic and non-transgenic)

Spectra

PCA, CARS

PW PCA and prediction map, OW (single  kernels)

PLS-DA, SVM

Transgenic and non-transgenic  classification

99.5% (PLS-DA)

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

91.50%

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

94.80%

Maize

4 varieties, 3 crop years

Spectra

no

OW (single kernels)

LS-SVM

Variety classification

94.40%

Maize

17

Spectra and image

PCA, SPA, GLCM, MDS

OW (single kernels)

LS-SVM

Variety classification

94.40%

Maize

18

Spectra and image

PCA

OW (single kernels), PW PCA and  prediction map

PLS-DA

Textural, vitreous, floury and the third  type endosperm

85% (PLS-DA)

Maize

3 hardness

Spectra and image

PCA

PW PCA and prediction map, OW (single  kernels)

PLS-DA

Hardness classification

97% (PLS-DA)

Maize

14

Spectra

joint skewness-based wavelength selection

OW (single kernels)

LS-SVM

Variety classification

98.18%

Maize

3

Spectra and image

PCA

OW (single kernels)

SVM, RBFNN

Variety classification

93.85% (RBFNN)

Maize

6

Spectra and image

PCA, KPCA, GLCM

OW (bulk samples)

LS-SVM, BPNN, PCA, KPCs

Classes classification

98.89% (PCA-GLCM-LS-SVM)

Rice

4 origins

Spectra and image

PCA, GLCM

OW (single kernels)

SVM

Variety classification

91.67%

Rice

4

Spectra

PLS-DA, PCA

PW PCA and OW (bulk samples)

KNN, PLS-DA, SIMCA, SVM, RF

Seed cultivars classification

100% (SIMCA, SVM, and RF)

Soybean, maize and rice

3 of each kind of seed

Spectra

neighborhood mutual information

OW (single kernels)

ELM, RF

Variety classification

100% (ELM)

Waxy corn

4

Spectra and image

SPA, GLCM

OW (single kernels)

PLS-DA, SVM

Variety classification

98.2% (SVM)

Wheat

8

Image

WT, STEPDISC, PCA

PW and OW (bulk samples)

BPNN, LDA, QDA

Classes classification

99.1% (LDA)

Wheat

8

Spectra

STEPDISC

OW (bulk samples)

LDA, QDA, Standard BPNN, Wardnet BPNN

Variety classification

94–100% (LDA)

Wheat

5

Spectra

STEPDISC

PW PCA and OW (bulk samples)

LDA, QDA

Classes classification

90–100% (LDA)

表2 高光譜成像應(yīng)用于種子活力和活力檢測的參考文獻(xiàn)摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley

1 variety, 8 treatments

Spectra

PCA, MNF

PWbprediction map and OWc(single kernels)

Maximum likelihood multinomial,  regression classifier

Germination level detection

97% when single kernels grouped into the  three categories

Corn

3 varieties, 2 treatments

Spectra

No

OW (single kernels)

PLS-DA

Viability prediction

> 95.6%

Cryptomeria japonica and Chamaecyparis  obtuse

2 treatments of each kind of seed

Spectra

No

OW (single kernels)

Spectral index

Viability prediction

98.30%

Cucumber

1 variety, 2 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Viability prediction

100%

Muskmelon

1 variety, 4 treatments

Spectra

VIP, SR, and SMC

OW (single kernels)

PLS-DA

Viability prediction

94.60%

Norway spruce

1 variety, 3 treatments

Spectra and image

L1-regularized logistic regression based  feature selection

OW (single kernels)

SVM

Viability prediction

> 93%

Pepper

1 variety, 2 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Germination level detection

> 85%

Tree seeds

3 varieties, 8 treatments

Spectra

LDA

OW (single kernels)

LDA

Germination level detection

> 79%

Wheat, barley and sorghum

B: 3 varieties W: 3 varieties S: 2,  varieties 6 treatments

Spectra

PCA

OW (single kernels), PW prediction map

PLS-DA, PLSR

Viability prediction

R = 0.92 (PLS-DA)

表3 高光譜成像應(yīng)用于種子質(zhì)量缺陷檢測的參考文獻(xiàn)摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Mung bean

1 variety, 8 treatments

Spectra and image

PCA

OWb(single kernels)

LDA, QDA

Insect damage detection

> 82%

Soybean

1 variety, 5 treatments

Spectra and image

GLCM

OW (single kernels)

LDA, QDA

Insect damage detection

99% (QDA)

Wheat

1 variety, 4 insect varieties

Spectra and image

STEPDISC, GLCM, GLRM, PCA

OW (single kernels)

LDA, QDA

Insect damage detection

95.3–99.3%

Wheat

1 variety, 3 treatments

Spectra and image

PCA

PWcprediction map and OW (single kernels)

Spectral index

Seed sprouted detection

> 90%

表4 高光譜成像應(yīng)用于種子真菌損傷檢測的參考文獻(xiàn)摘要

Seed

Varieties

Features

Data analysis strategies

Main application type

Classification result (highest accuracy)

Spectra/image

Extraction/selection methods

Analysis level

Classification/regression methods

Barley

1 variety, 2 fungi

Spectra and image

PCA

PWbprediction map and OWc(single kernels)

LDA, QDA, MDA

Fungus (Ochratoxin  A and Penicillium) damage detection

> 82%

Canola

1 variety, 2 fungi,

Spectra and image

PCA

OW (single kernels)

LDA, QDA, MDA

Fungus (Aspergillus  glaucus and Penicilliumspp.) damage detection

> 90%

Corn

3 varieties, 5 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Fungus (Aflatoxin B1) damage detection

96.90%

Corn

1 variety, 3 treatments

Spectra

No

PW spectra

spectral index

Fungus (Aflatoxin A. flavus) damage  detection

93%

Corn

1 variety, 3 treatments

Spectra

PCA

OW (single kernels), PW PCA

LS-SVM, KNN

Fungus (Aflatoxin A. flavus) damage  detection

> 91% (KNN)

Hick peas, green peas, lentils, pinto  beans and kidney beans

5 different pulses, 2 fungi

Spectra and image

PCA

OW (single kernels), PW PCA

LDA, QDA

Fungus (Penicillium commune Thom, C.  and A. flavus Link, J.) damage detection

96%-100%

Maize

4 varieties

Spectra

PCA

OW (single kernels), PW prediction map

SVM, SVR

Fungus (Aflatoxin B1) damage detection

R2 = 0.77

Maize

1 variety, 5 treatments

Spectra

PCA, FDA

OW (single kernels), PW PCA

FDA

Fungus (Aflatoxin B1) damage detection

88%

Maize

1 variety, 5 treatments

Spectra

PCA

OW (single kernels)

FDA

Fungus (Aflatoxin B1) damage detection

98%

Maize

1 variety, 3 treatments

Spectra

No

OW (single kernels), PW prediction map

PLS-DA

Fungus (Fusarium) damage detection

77% (PLS-DA)

Maize

1 variety, nine treatments

Spectra

PCA, variable importance plots

OW (single kernels), PW PCA and  prediction map

PLSR

Fungus damage detection

R2 = 0.87

maize

1 variety, 2 fungi, 3 treatments

Spectra

No

OW (single kernels)

discriminant analysis

Fungus (Toxigenic and atoxigenic A.  flavus) damage detection

94.40%

Maize

12 varieties, 4 fungi

Spectra

PCA

OW (bulk samples), PW PCA

ANOVA, Fisher’s LSD test

Fungus (Aspergillus strains) damage  detection

Fisher’s LSD test

Oat50

1 variety, 4 treatments

Spectra

PLSR

OW (single kernels), PW prediction map

PLSR, PLS-LDA

Fungus (Fusarium) damage detection

R2 = 0.8

Peanut

1 variety, 2 treatments

Spectra

PCA

OW (single kernels), PW prediction map

PCA

Moldy kernel detection

98.73%

Peanut

1 variety, 2 treatments

Spectra

ANOVA, NWFE

OW (single kernels), PW prediction map

SVM

Fungus (Aflatoxin) damage detection

> 94%

Rice

1 variety, 6 treatments

Spectra

No

OW (bulk samples)

SOM, PLSR

Fungus (Aspergillus) damage detection

R2 = 0.97

Watermelon

1 variety, 2 treatments

Spectra

Intermediate PLS (iPLS)

OW (single kernels) PW prediction map

PLS-DA, LS-SVM

Fungus (Cucumber green mottle mosaic  virus) damage detection

83.3% (LS-SVM)

Watermelon

1 variety, 2 treatments

Spectra

Intermediate PLS (iPLS)

OW (single kernels), PW prediction map

PLS-DA, LS-SVM

Fungus (Acidovorax citrulli) damage  detection

> 90%

Wheat

4 varieties, 2 fungi

Spectra

PCA

OW (single kernels), PW spectra

LDA

Fungus (Fusarium) damage detection

> 91%

Wheat

33 varieties, 3 treatments

Spectra

No

OW (single kernels), PW spectra

spectral index

Fungus (Fusarium head blight) damage  detection

81%

Wheat

1 variety, 3 treatments

Spectra and image

PCA, STEPDISC

OW (single kernels)

LDA

Fungus (Fusarium) damage detection

92%

Wheat

1 variety, 3 fungi

Spectra and image

STEPDISC, GLCM, GLRM, PCA

OW (single kernels)

LDA, QDA, MDA

Fungus (Penicilliumspp., Aspergillus  glaucus group, and Aspergillus niger) damage detection

> 95%

Wheat

3 varieties

Spectra

PCA

OW (bulk, single kernels), PW PCA

PLS-DA, iPLS-DA

Fungus (Fusarium) damage detection

99%

高光譜成像是一個復(fù)雜的、多學(xué)科的領(lǐng)域,其目的是在不進(jìn)行單調(diào)的樣品制備情況下,同時對多種化學(xué)成分和物理屬性的含量和空間分布進(jìn)行有效和可靠的測量,因此為種子自動分級和缺陷檢測系統(tǒng)的設(shè)計提供了可能。本文概述的各種應(yīng)用表明,在種子分級、活力和活力檢測、缺陷和疾病檢測、清潔度檢測和種子成分測定方面,高光譜成像具有很大的應(yīng)用潛力。可以預(yù)見,采用該技術(shù)的實時種子監(jiān)測系統(tǒng)將在不久的將來滿足現(xiàn)代種子工業(yè)控制和分選系統(tǒng)的需求。

全文閱讀

Feng L, Zhu S, Liu F, et al, et al. Hyperspectral imaging for seed quality and safety inspection: a review. Plant Methods, 2019, 15(1): 1-25.

來源:上海澤泉科技股份有限公司
聯(lián)系電話:021-32555118
E-mail:michael.shen@zealquest.com

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網(wǎng)友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com