動(dòng)物能量代謝測(cè)量技術(shù)的應(yīng)用
瀏覽次數(shù):1305 發(fā)布日期:2020-2-10
來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
2019年歲末的一場(chǎng)新型冠狀病毒(2019-nCoV)肆虐讓整個(gè)中華大地籠罩在恐慌之中。2020年1月23日中科院武漢病毒所研究發(fā)現(xiàn)新型冠狀病毒與此前在云南中菊頭蝠(Rhinolophus affinis)上檢測(cè)到的蝙蝠冠狀病毒RaTG13相比較具有96.2%的一致性。據(jù)此推測(cè)新型冠狀病毒起源于蝙蝠。國(guó)外大量研究報(bào)道證實(shí)蝙蝠確實(shí)是攜帶最多病毒種類(lèi)的哺乳動(dòng)物之一,但是因?yàn)樘厥怏w質(zhì)(高溫)和強(qiáng)大的免疫系統(tǒng),這些病毒并不能對(duì)蝙蝠造成傷害。而維持高體溫和增強(qiáng)免疫系統(tǒng)與新陳代謝(能量代謝)密切相關(guān)。
SSI多功能創(chuàng)新型動(dòng)物能量代謝監(jiān)測(cè)基于呼吸代謝室(metabolic chamber)技術(shù),系統(tǒng)主要由定制呼吸室、氣流發(fā)生控制與二次抽樣單元、氣體分析(氧氣、二氧化碳和水汽)單元、數(shù)據(jù)采集器,功能強(qiáng)大數(shù)據(jù)分析處理軟件等組成,可以備選溫度傳感器探針、溫濕度控制箱、動(dòng)物活動(dòng)度監(jiān)測(cè)器、動(dòng)物行為記錄與分析單元、野生動(dòng)物專(zhuān)用紅外熱成像單元、植入式溫度(心率)記錄儀等全面記錄動(dòng)物的行為與生理參數(shù),廣泛用于動(dòng)物呼吸生理學(xué)、腸道微生物能量代謝調(diào)節(jié),神經(jīng)與免疫代謝調(diào)節(jié),野生動(dòng)物生理生態(tài)以及與微生物宿主的協(xié)同進(jìn)化研究等。
上圖為幾種動(dòng)物的能量代謝測(cè)量研究(備注:左上圖的蜂鳥(niǎo)設(shè)計(jì)同樣適用于蝙蝠)
典型應(yīng)用一
Interruption to cutaneous gas exchange is not a likely mechanism of WNS-associated death in bats[J],Carey C S, Boyles J G.. Journal of Experimental Biology, 2015, 218(13): 1986-1989.
本文使用SSI能量代謝監(jiān)測(cè)技術(shù)研究了褐蝠患有白鼻綜合癥(WNS)后的皮膚脫水,以及呼吸代謝過(guò)程中的水分代謝、能量代謝情況,實(shí)驗(yàn)測(cè)試了毀滅性肺孢子蟲(chóng)感染可導(dǎo)致跨翼膜的被動(dòng)氣體交換通路中斷,從而導(dǎo)致水強(qiáng)化肺呼吸代償性增加。
典型應(yīng)用二
WHITE-NOSE SYNDROME AND IMMUNE RESPONSES IN A RESISTANT BAT SPECIES (EPTESICUS FUSCUS)[J], Naffa K S.2019.
本實(shí)驗(yàn)通過(guò)SSI能量代謝技術(shù)測(cè)量了冬眠期的代謝率喚醒/遲鈍的模式(Fig3),以及利用敏感的數(shù)據(jù)記錄器記錄體溫(Fig2),研究了易感真菌Psuedogymnoascus destructans(Pd)患有WNS疾病蝙蝠免疫系統(tǒng)反應(yīng)可能導(dǎo)致新陳代謝率的提高以使蝙蝠更頻繁地醒來(lái)。假設(shè)抗藥性蝙蝠不會(huì)產(chǎn)生免疫反應(yīng),但是如果它們真的產(chǎn)生免疫反應(yīng)作為回應(yīng),假設(shè)蝙蝠接種了Pd并用抗炎藥治療治療不會(huì)對(duì)感染產(chǎn)生反應(yīng),最終會(huì)保留脂肪儲(chǔ)備并降低冬眠期間的代謝消耗。
典型應(yīng)用三
Short-term thermoregulatory adjustments in a South American anseriform, the black-necked swan (Cygnus melanocoryphus)[J],Nespolo R F, Artacho P, Verdugo C, et al. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008, 150(3): 366-368.
本文通過(guò)SSI能量代謝監(jiān)測(cè)研究黑頸天鵝短期熱應(yīng)激后的能量代謝調(diào)節(jié),結(jié)果表明此種類(lèi)天鵝與其它雁形目、雜色類(lèi)鵝類(lèi)相比較出現(xiàn)較低的靜息代謝率,以及黑頸天鵝在不同的溫度濕度環(huán)境下改變了“濕”熱導(dǎo)率。
典型應(yīng)用四
Comparison between conventional and" clinical" assessment of experimental lung fibrosis[J],Ask K, Labiris R, Farkas L, et al.. Journal of translational medicine, 2008, 6(1): 16.
本文通過(guò)SSI能量代謝監(jiān)測(cè)技術(shù)研究特發(fā)性肺纖維化動(dòng)物的最大耗氧量VO2max,將嚙齒動(dòng)物置于在封閉的跑步機(jī)上以越來(lái)越快的速度跑連續(xù)測(cè)量氧氣和二氧化碳。最大VO2平均減少了10%,但沒(méi)有達(dá)到統(tǒng)計(jì)顯著性。
需要說(shuō)明的是,北京易科泰生態(tài)技術(shù)有限公司作為美國(guó)SSI公司在中國(guó)的獨(dú)家技術(shù)支持中心,積10多年的動(dòng)物能量代謝監(jiān)測(cè)技術(shù)經(jīng)驗(yàn)可以為各種動(dòng)物(媒介昆蟲(chóng)、哺乳動(dòng)物、鳥(niǎo)類(lèi)、海洋動(dòng)物、經(jīng)濟(jì)動(dòng)物、人體等)能量代謝監(jiān)測(cè)提供創(chuàng)新型專(zhuān)家型技術(shù)方案,詳細(xì)技術(shù)方案咨詢(xún)請(qǐng)致電010-82611269。
參考文獻(xiàn)及資料(僅列出部分代表性文獻(xiàn))
- Ask K, Labiris R, Farkas L, et al. Comparison between conventional and" clinical" assessment of experimental lung fibrosis[J]. Journal of translational medicine, 2008, 6(1): 16.
- Becker N I, Encarnação J A, Kalko E K V, et al. The effects of reproductive state on digestive efficiency in three sympatric bat species of the same guild[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2012, 162(4): 386-390.
- Cabrera-Martínez L V, Cruz-Neto A P. The energetic cost of mounting an immune response for Pallas’s long-tongued bat (Glossophaga soricina)[J]. PeerJ, 2018, 6: e4627.
- Carey C. Is disruption to passive gas-exchange a mechanism of dehydration for WNS-infected hibernating bats?[M]. Southern Illinois University at Carbondale, 2014.
- Dechmann D K N, Wikelski M, van Noordwijk H J, et al. Metabolic costs of bat echolocation in a non-foraging context support a role in communication[J]. Frontiers in physiology, 2013, 4: 66.
- Gearhart C, Adams A M, Pinshow B, et al. Evaporative water loss in Kuhl's pipistrelles declines along an environmental gradient, from mesic to hyperarid[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2020, 240: 110587.
- Makanya A N, Mortola J P. The structural design of the bat wing web and its possible role in gas exchange[J]. Journal of Anatomy, 2007, 211(6): 687-697.
- Meierhofer M B, Johnson J S, Field K A, et al. Bats recovering from white-nose syndrome elevate metabolic rate during wing healing in spring[J]. Journal of wildlife diseases, 2018, 54(3): 480-490.
- Naffa K S. WHITE-NOSE SYNDROME AND IMMUNE RESPONSES IN A RESISTANT BAT SPECIES (EPTESICUS FUSCUS)[J]. 2019.
- Nespolo R F, Artacho P, Verdugo C, et al. Short-term thermoregulatory adjustments in a South American anseriform, the black-necked swan (Cygnus melanocoryphus)[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2008, 150(3): 366-368.
- Suarez R K, Welch Jr K C, Hanna S K. Flight muscle enzymes and metabolic flux rates during hovering flight of the nectar bat, Glossophaga soricina: further evidence of convergence with hummingbirds[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2009, 153(2): 136-140.
- Welman S, Tuen A A, Lovegrove B G. Using thermoregulatory profiles to assess climate change vulnerability in an arboreal tropical bat: heterothermy may be a pre-adaptive advantage[J]. Climate Research, 2017, 74(2): 161-170.
- https://zhidao.baidu.com/daily/view?id=192918
- https://new.qq.com/rain/a/20200201A03I5S00
- http://news.sciencenet.cn/htmlpaper/2015213862993835711.shtm?id=35711
- http://www.solarf.net/keji/201910/2171.html