English | 中文版 | 手機版 企業(yè)登錄 | 個人登錄 | 郵件訂閱
當前位置 > 首頁 > 技術文章 > FMT150藻類培養(yǎng)與在線監(jiān)測系統(tǒng)參考文獻目錄

FMT150藻類培養(yǎng)與在線監(jiān)測系統(tǒng)參考文獻目錄

瀏覽次數:4643 發(fā)布日期:2019-7-10  來源:本站 僅供參考,謝絕轉載,否則責任自負
        FMT150藻類培養(yǎng)與在線監(jiān)測系統(tǒng)將生物反應器與監(jiān)測儀器獨特地結合在一起,用于淡水、海水藻類和藍細菌(藍藻)等的模塊化精確光照培養(yǎng)與生理監(jiān)測。
        FMT150可以通過控制單元(包括電腦與預裝軟件,軟件分為基本版與高級版)中用戶自定義程序動態(tài)自動改變培養(yǎng)條件并實時在線監(jiān)測培養(yǎng)條件與測量參數。光強、光質、溫度和通入氣體的組分與流速都可以精確調控。加裝恒濁和恒化模塊后還可以調控培養(yǎng)基的pH值和濁度。FMT150可連接多達7個蠕動泵進行不同恒化與pH條件培養(yǎng)。培養(yǎng)條件可以根據用戶自定義方案動態(tài)變化,既可以進行恒定條件下的培養(yǎng),也可以一定的周期自動變化?刂茊卧赏瑫r控制多臺FMT150進行同步實驗,保證不同處理實驗間的一致性。
        儀器內置
葉綠素熒光儀和光密度計等。培養(yǎng)藻類的生長狀況由光密度計測定OD680和OD720實現實時監(jiān)控,并可以通過OD值監(jiān)測相對葉綠素濃度。葉綠素熒光儀實時監(jiān)測Ft并可測定F0、Fm、Fm′和QY來反映培養(yǎng)藻類的光合生理狀態(tài)。
    參考文獻:
1. Multiomics resolution of molecular events during a day in the life of Chlamydomonas. Strenkert D, et al. 2019, PNAS, 116 (6): 2374-2383
2. Chlorella vulgaris integrates photoperiod and chloroplast redox signals in response to growth at high light. Hollis L, et al. 2019, Planta, 249(4): 1189-1205
3. Growth kinetics and mathematical modeling of Synechocystis sp. PCC 6803 under flashing light. Straka L, et al. 2019, Biotechnology and bioengineering, 116(2): 469-474
4. CO2 Capture for Industries by Algae. Anguselvi V, et al. 2019, Algae, DOI: 10.5772/intechopen.73417
5. Glycolate from microalgae: an efficient carbon source for biotechnological applications. Taubert A, et al. 2019, Plant biotechnology journal, DOI: 10.1111/pbi.13078
6. Response of the thylakoid proteome of Synechocystis sp. PCC 6803 to photohinibitory intensities of orange-red light. Cordara A, et al. 2018, Plant physiology and biochemistry, 132: 524-534
7. Effect of culture density on biomass production and light utilization efficiency of Synechocystis sp. PCC 6803. Straka L, et al. 2018, Biotechnology and bioengineering, 115(2): 507-511
8. Effect of carbon limitation on photosynthetic electron transport in Nannochloropsis oculata. Zavřel T, et al. 2018, Journal of Photochemistry and Photobiology B: Biology, 181:31-43
9. Diel regulation of photosynthetic activity in the oceanic unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Masuda T, et al. 2018, Environmental Microbiology, 20(2): 546–560
10. Analysis of the light intensity dependence of the growth of Synechocystis and of the light distribution in a photobioreactor energized by 635 nm light. Cordara A, et al. 2018, PeerJ, 6:e5256, DOI 10.7717/peerj.5256
11. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID, et al. 2018, Environmental Science and Pollution Research International, 25(23):23018-23032
12. Dynamic response of Synechocystis sp. PCC 6803 to changes in light intensity. Straka L, et al. 2018, Algal Research, 32:210-220
13. Growth bottlenecks of microalga Dunaliella tertiolecta in response to an up-shift in light intensity. Binte Safie SR, et al. 2018, European Journal of Phycology, 53(4): 509-519
14. Advancement of the cultivation and upscaling of photoautotrophic suspension cultures using Chenopodium rubrum as a case study. Segečová A, et al. 2018, Plant Cell, Tissue and Organ Culture, 135(1): 37–51
15. Enhanced biomass production of Scenedesmus obliquus in a flat-panel photobioreactor, grown in photoautotrophic mode. Trivedi J, et al. 2018, Biofuels, DOI: 10.1080/17597269.2018.1448634
16. Comparison of ethanol tolerance between potential cyanobacterial production hosts. Kämäräinen J, et al. 2018, Journal of biotechnology, 283:140-145
17. Rerouting of metabolism into desired cellular products by nutrient stress: Fluxes reveal the selected pathways in cyanobacterial photosynthesis. Qian X, et al. 2018, ACS synthetic biology, 7(5): 1465-1476
18. Growth of algal biomass in laboratory and in large-scale algal photobioreactors in the temperate climate of western Germany. Schreiber C, et al. 2017, Bioresource Technology, 234:140-149.
19. Intracellular spectral recompositioning of light enhances algal photosynthetic efficiency. Fu W, et al. 2017, Science Advances, 3(9): e1603096
20. Carotenoid Production Process Using Green Microalgae of the Dunaliella Genus: Model-Based Analysis of Interspecies Variability. Fachet M, et al. 2017, Ind. Eng. Chem. Res., 56(45): 12888-12898
21. Light attenuation changes with photo-acclimation in a culture of Synechocystis sp. PCC 6803. Straka L, et al. 2017, Algal Research, DOI: 10.1016/j.algal.2016.11.024
22. Metabolic Flexibility Underpins Growth Capabilities of the Fastest Growing Alga. Treves H, et al. 2017, Current Biology, 27(16): 2559-2567
23. Quantitating active Photosystem II reaction center content from fluorescence induction transients. Murphy CD, et al. 2017, Limnology and Oceanography: Methods, 15(1): 54-69
24. Comparative evaluation of phototrophic microtiter plate cultivation against laboratory-scale photobioreactors. Morschett H, et al. 2017, Bioprocess and Biosystems Engineering, 40(5): 663-673
25. Impaired mitochondrial transcription termination disrupts the stromal redox poise in Chlamydomonas. Uhmeyer A, et al. 2017, Plant Physiology, 174(3): 1399-1419
26. Interactive effects of nitrogen and light on growth rates and RUBISCO content of small and large centric diatoms. Li G, et al. 2017, Photosynthesis Research, 131(1): 93-103
27. A method to decompose spectral changes in Synechocystis PCC 6803 during light-induced state transitions. Acuña AM, et al. 2016, Photosynthesis Research, 130 (1) : 1-13
28. Comparison of D1´‐and D1‐containing PS II reaction centre complexes under different environmental conditions in Synechocystis sp. PCC 6803. Crawford TS, et al. 2016, Plant, Cell & Environment, 39(8): 1715-1726
29. The source of inoculum drives bacterial community structure in Synechocystis sp. PCC6803-based photobioreactors. Zevin AS, et al. 2016, Algal Research, 13: 109-115
30. Flow cytometry enables dynamic tracking of algal stress response: A case study using carotenogenesis in Dunaliella salina, Fachet M, et al. 2016, Algal Research, 13: 227-234
31. The nitrogen costs of photosynthesis in a diatom under current and future pCO2, G Li, et al. 2015, New Phytologist, 205(2): 533-543
32. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. J Yu, et al. 2015, Sci Rep. 5: 8132.
33. Sustained circadian rhythms in continuous light in Synechocystis sp. PCC6803 growing in a well-controlled photobioreactor. P van Alphen, et al. 2015, PLoS ONE 10(6): e0127715.
34. Effects of phosphate limitation on soluble microbial products and microbial community structure in semi‐continuous Synechocystis‐based photobioreactors. AS Zevin, et al. 2015, Biotechnology and Bioengineering, 112(9): 1761-1769
35. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. A Polishchuk, et al. 2015, Bioresource Technology, 193: 469-476
36. Interactive effects of and light on growth rates and RUBISCO content of small and large centric diatoms. G Li, et al. 2015, Biogeosciences Discuss., 12: 16645-16672
37. The role of an electron pool in algal photosynthesis during sub-second light–dark cycling. C Vejrazka, et al. 2015, Algal Research, 12: 43-51
  • A dynamic growth model of Dunaliella salina: Parameter identification and profile likelihood analysis, M Fachet, et al. 2014, Bioresource Technology, 173: 21-31
  • Effects of light and circadian clock on growth and chlorophyll accumulation of Nannochloropsis gaditana, R Braun, et al. 2014, Journal of Phycology, 50(3): 515-525
  • Ultradian metabolic rhythm in the diazotrophic cyanobacterium Cyanothece sp. ATCC 51142, J Červený, et al. 2013, PNAS, 110(32): 13210-13215
  • Temperature-dependent growth rate and photosynthetic performance of Antarctic symbiotic alga Trebouxia sp. cultivated in a bioreactor, K Balarinová, et al. 2013, Czech polar reports, 3 (1): 19-27
  • Rising CO2 Interacts with Growth Light and Growth Rate to Alter Photosystem II Photoinactivation of the Coastal Diatom Thalassiosira pseudonana, Gang Li, et al. 2013, PLOS ONE, 8(1)
  • Photosystem II protein clearance and FtsH function in the diatom Thalassiosira pseudonana, DA Campbell, et al. 2013, Photosynthesis Research, 115(1): 43-54
  • Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light, C Vejrazka, et al. 2013, Applied Microbiology and Biotechnology, 97(4): 1523-1532
  • Natural variants of Photosystem II subunit D1 tune photochemical fitness to solar intensity, DJ Vinyard, et al. 2013, Journal of Biological Chemistry, 288: 5451-5462
  • The mTERF protein MOC1 terminates mitochondrial DNA transcription in the unicellular green alga Chlamydomonas reinhardtii, et al. 2013, Nucleic Acids Research, 1-15
  • Phycobilisome Antenna Deletion in a Cyanobacterium does Not Improve Photosynthetic Energy Conversion Efficiency or Productivity in a Bench-Scale Photobioreactor System, LE Page, et al. 2013, Research for Food, Fuel and the Future
  • Phycobilisome antenna truncation reduces photoautotrophic productivity in Synechocystis sp. PCC 6803, a cyanobacterium, LE Page, et al. 2012, Applied and Environmental Microbiology, 79(19)
  • Elevated Carbon Dioxide Differentially Alters The Photophysiology Of Thalassiosira Pseudonana (Bacillariophyceae) And Emiliania Huxleyi (Haptophyta), McCarthy A. et al. 2012, J. Phycol., 48: 635–646
  • Photosynthetic Efficiency of Chlamydomo Reinhardtii in Attenuated, Flashing Light, Vejrazka C. et al. 2012, Biotechnology and Bioengineering
  • Genetic Analysis of the Hox Hydrogenase in the Cyanobacterium Synechocystis sp. PCC 6803 Reveals Subunit Roles in Association, Assembly, Maturation, and Function, C Eckert. et al. 2012, The Journal of Biological Chemistry, 287: 43502-43515.
  • Reduction of Photoautotrophic Productivity in the Cyanobacterium Synechocystis sp. Strain PCC 6803 by Phycobilisome Antenna Truncation, Page L. E. et al. 2012, Appl. Environ. Microbiol. 78(17): 6349-6351
  • Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions, Santos A.M. et al. 2012, Bioresource Technology, 104:593-599
  • On the dynamics and constraints of batch culture growth of the cyanobacterium Cyanothece sp. ATCC 51142, Sinetova M.A. et al. 2012, Journal of Biotechnology
  • Modelling and simulation of photosynthetic microorganism growth: Random walk vs. Finite difference method, Papáček S. et al. 2012, Mathematics and Computers in Simulation, 82(10): 2022-2032
  • Photosynthetic Efficiency of Chlamydomonas reinhardtii in Flashing Light, Vejrazka C. et al. 2011, Biotechnology and Bioengineering, 108(12):2905-2913
  • A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii, Kropat J. et al. 2011, The Plant Journal, 66:770-780
  • The Selectivity of Milking of Dunaliella salina, Kleinegris D. et al. 2010, Mar Biotechnol, 12:14-23
  • Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor, Nedbal L. et al. 2010, J Ind Microbiol Biotechnol, 37: 1319-1326
  • Metabolic rhythms of the cyanobacterium Cyanothece sp. ATCC 51142 correlate with modeled dynamics of circadian clock, J Červený, L Nedbal, 2009, Journal of Biological Rhythms, 24(4): 295-303
  • Photobioreactor for cultivation and real-time,in-situ measurement of O2 and CO2 exchange rates, growth dynamics, and of chlorophyll fluorescence emission of photoautotrophic microorganisms, J Červený, et al. 2009, Eng. Life Sci. 9(3): 247-253
  • A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics, L Nedbal, et al. 2008, Biotechnology and Bioengineering, 100(5): 902-910
來源:北京易科泰生態(tài)技術有限公司
聯系電話:13718717100
E-mail:sales@eco-tech.com.cn

用戶名: 密碼: 匿名 快速注冊 忘記密碼
評論只代表網友觀點,不代表本站觀點。 請輸入驗證碼: 8795
Copyright(C) 1998-2024 生物器材網 電話:021-64166852;13621656896 E-mail:info@bio-equip.com