English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 技術(shù)文章 > FRESH Bioprinting of Soft Biomaterials

FRESH Bioprinting of Soft Biomaterials

瀏覽次數(shù):933 發(fā)布日期:2023-2-8  來(lái)源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
FRESH Bioprinting of Soft Biomaterials
Franca Scocozza1, MSc, Milena Savioli Lopes2, PhD, Volodymyr Kuzmenko2, PhD, Itedale Namro Redwan2, PhD
1Dept. of Civil Engineering and Architecture, University of Pavia, Italy
2CELLINK, Gothenburg, Sweden
 
Abstract
In extrusion-based  3D  bioprinting, working with soft  materials,  like  collagen, presents  a  com- plex challenge given their inability to retain a de- sired  shape  following  extrusion.
One solution is freeform reversible embedding of suspended hydrogels  (FRESH), a method of biofabrication which provides a temporary support and prevents the collapse or deformation of a construct during bioprinting.  LifeSupport™, a commonly used gel- atin-based support  bath for  FRESH  bioprinting, offers the added advantage that it can be easily removed after printing. This study aims to optimize the FRESH bioprinting of several popular biomate-rials using LifeSupport bath to provide BIO X users with established printing protocols. To show the versatility of FRESH bioprinting, we chose three soft biomaterials with different gelation mechanisms  (thermal self-assembly,  photo, and  ionic). All biomaterials were rheologically characterized, optimized for printing and, finally, bioprinted with cells.

APPLICATION NOTE
Introduction
In the span of a few years, 3D bioprinting has become one of the most popular techniques for precisely placing biomaterials and cells in 3D space to biofabricate constructs that recreate the structure and function of complex  biological systems, from cellular to organ scale (Shiwarski, 2021). Although many different   technologies and   bioprinting strategies have been  proposed for bioprinting complex tissues with very high resolution, extrusion- based bioprinting remains the most popular thanks to its versatility, low cost, and ease of use.
Unfortunately, extrusion-based 3D   bioprinting of complex structures is difficult with soft liquid- like biomaterials  (eg,collagen or decellularized extracellular matrix) due to gravity and subsequent loss of print fidelity. To overcome this, researchers have  developed  photo-crosslinkable, temperature- sensitive,  and rheologically modified biomaterials to counter the effects of gravity and enable 3D bioprinting in the air (Adib,  2020;  Heid,  2020). However, these approaches often require compromises in terms of biological properties and stringent bioprinting parameters (Hazur, 2020).
Freeform reversible embedding of suspended hydrogels  (FRESH)
method has been developed as a solution to this issue by providing a temporary support structure (referred  to  in  the  following text  as  a  support  bath) to  prevent the  collapse and deformation of the constructs during printing (Hinton, 2015). The support bath has Bingham plastic properties  that  make  the  support  bath  behave as a hard body under low shear stresses and as a viscous fluid under high shear stresses. In this way, the printhead nozzle can move throughout the bath during printing and extrude biomaterial in the empty space created (Wu, 2011). After FRESH bioprinting, the support bath is melted away and the construct released.
FRESH   bioprinting   allows   using   a   variety   of biomaterials  with  different  gelation  mechanisms that can be printed in the wide range of support baths available on the market (based on gelatin, alginate, Carbopol, agarose, gellan gum, hyaluronic acid, etc.). Among these, gelatin-based support bath is one of the most used for FRESH bioprinting thanks to biocompatibility, low cost, and thermoreversible properties that make it possible to print constructs at room temperature and melt the bath at physiological temperature  after  printing. This  is  a very  gentle process that is compatible with cells and proteins, meaning that even extremely soft scaffolds can be printed successfully and then released without losing essential biological properties.
This study aims to optimize the 3D bioprinting of three different low viscosity soft biomaterials with different  gelation  mechanisms  using  the  FRESH bioprinting method with LifeSupport, a sterile gelatin based support bath provided by AdvancedBioMatrix. (Lee, 2019; Jeon, 2019). The optimization  process included  rheological  characterization,  adjustment of printing parameters and a proof-of-concept cell study with established bioprinting protocols.

Materials and methods
PREPARATION OF MATERIALS
An   established   protocol   was   used   for   the
preparation of the LifeSupport  bath  (Advanced BioMatrix,  5244):  i)  add 40mL of cold  (4°C) suspension media (eg,  PBS,  crosslinker  solution, cell  medium) to a 2 g of  LifeSupport, ii) vortex and shake the solution, iii) let stand for 15 minutes at 4°C to allow LifeSupport to fully rehydrate, iv) centrifuge the  rehydrated  LifeSupport twice for 1.5  minutes at 1500  rpm, v)  pour off the  liquid supernatant,  vi)  settle  the LifeSupport  in  the printing substrate  (eg,Petri  dish  or well  plate). For  the  detailed  preparation  protocol,  one  can refer  to     the  LifeSupport  webpage.  For  this study, we  selected  soft  biomaterials with three different   gelation   mechanisms:   collagen   with thermal  self-assembly,   methacrylated   collagen with photocrosslinking, and sodium alginate with ionic crosslinking. For printing with collagens, the suspension medium for the bath was PBS, and for printing with alginate, the suspension medium for the bath contained 0.1% (w/v) CaCl2.
TeloCol-10 (Advanced BioMatrix, 10 mg/mL, 5226) is a type  I  bovine collagen solution that can  be thermally crosslinked at 37°C. To prepare 1 mL of 6  mg/mL TeloCol® solution for  printing, 600  µL of 10 mg/mL stock solution was transferred into a sterile Eppendorf using a positive displacement pipette. 100 µL of 10X PBS was added and mixed. 7.0 μL of sterile 1M NaOH was used to neutralize the solution and achieve the physiologic pH of 7.2. 293  μL of deionized water was added to  reach the final concentration of 6 mg/mL. For printing
 
APPLICATION NOTE

with cells, the deionized water was replaced with cell medium. For more details, access the FRESH Bioprinting Protocol: TeloCol-10.
PhotoCol  (Advanced  BioMatrix, 5198)  is  a  lyo- philized methacrylated type I collagen that can be thermally crosslinked at 37°C (mild crosslinking) and subsequently photocrosslinked for complete mechanical  stabilization.  First,  the  lyophilized PhotoCol® biomaterial was reconstituted using 20 mM acetic acid to a concentration of 10 mg/mL. To prepare 1 mL of 6 mg/mL PhotoCol solution for printing, 600 µL of 10 mg/mL stock solution was transferred into a sterile Eppendorf using a positive displacement  pipette.  The  photoinitiator  LAP (AdvancedBioMatrix, 5205) was dissolved in the neutralization solution to achieve a concetration of 0.25% (w/v) in the final bioink. To neutralize 600 µL of 10 mg/mL, 45 μL of neutralization solution/ LAP was used to reach the physiologic pH of 7.2. 355 μL of deionized water was added to reach the final concentration of 6 mg/mL. For printing with cells, the deionized water was replaced with cell medium. For more details, access the FRESH Bioprinting Protocol: PhotoCol.
Alginate Lyophilizate (CELLINK, VLB000000201) 
provides a medium viscosity alginate solution sta- ble at room temperature  and ionically crosslink- able with CaCl₂. Lyophilized alginate was reconsti- tuted to 2% (w/v) using Reconstitution Agent M (CELLINK, IK200000050). For cell printing, algi- nate solution was mixed with cell suspension in cell medium with a volume ratio of 9:1. For more details, access the FRESH Bioprinting Protocol: Alginate.
 
RHEOLOGY
Rheological measurements of LifeSupport and collagen biomaterials were performed using an oscillatory shear mode on a rotational Discovery HR-10 Rheometer (TA  Instruments) with an aluminum 20mm parallel plate setup with a 0.5mm gap. Temperature ramps were evaluated from5°C to 37°C for collagen materials and from 10°C to 37°C for LifeSupport bath, with a ramp rate of 1°C/min, constant shear strain of 0.5%, and frequency of 1 Hz for all tests. The final stiffness of both collagen materials was measured under constant shear strain and frequency of 0.5% and 1 Hz, respectively, after loading the samples into a 5°C plate and instantaneously increasing the temperature to 37°C for thermal crosslinking. For PhotoCol, an additional step was introduced by exposing the sample to photocrosslinking for 30seconds, using an external LED lamp with near-UV light wavelength (405 nm).
 
OPTIMIZATION OF FRESH BIOPRINTING
PROCESS
FRESH bioprinting with LifeSupport involves dif- ferent steps shown in Figure 1. The process starts with adding a suspension medium (water, PBS, crosslinking solution, etc.) to the gelatin powder (Figure 1A). The solution is mixed and centrifuged to form the LifeSupport bath (Figure 1B), which is used to fill up a well plate (Figure 1C) or Petri dish. After printing (Figure 1D), the well plate is placed into an incubator at 37°C for 30 minutes for LifeSupport melting (Figure 1E) and the release of printed construct (Figure 1F).
To optimize FRESH bioprinting, one must select an appropriate needle size and  adjust  printing parameters such as pressure and speed. In our study, the printing optimization was performed using both 22 G and 25 G 1-inch length needles (CELLINK, NZ5221005001 and NZ5251005001). To optimize the printability of materials in the bath, 3-layer cylindrical grid constructs (d=10 mm) were 3D printed.
TeloCol and PhotoCol were transferred to 3 cc cartridges   (CELLINK,   CSC010300502) using

 
 
Figure 1.  FRESH bioprinting process: 
A) suspension medium addition to the gelatin powder; 
B) ready-to-use gelatin based support bath; 
C) well plate filledwith LifeSupport; 
D) printingof a biomaterial insidethe bath; 
E) LifeSupport melting at 37°C; 
F) release ofa printed construct.

 
APPLICATION NOTE
 
 
Figure 2. Rheologicalevaluationofthe support bath andcollagenbiomaterials. 
A) Materialstability withinCto37°C range. 
B) Final stiffness ofTeloColandPhotoColafter crosslinking.
 

a positive displacement pipette for viscous materials. The  alginate  solution was transferred to 3 cc cartridges using female/female Luer locks (CELLINK,  OH000000010).  The  cartridge  was then connected to the selected tip needle (1-inch length) and mounted onto the Temperature- controlled Printhead (CELLINK,000000020346). 
Biomaterials  were  printed  using  the  BIO  X bioprinter (CELLINK, D16110020717) with print bed and printhead temperatures set at 10°C and 5°C, respectively, for TeloCol and PhotoCol. Ambient conditions were used for alginate printing. After printing, the well plate was incubated for 30minutes at 37°C (5% CO₂ and 95% relative humidity) for thermal crosslinking of collagen materials and the melting of LifeSupport bath. After thermal crosslinking, PhotoCol samples were exposed to photocrosslinking at 405 nm light for 30 seconds. To avoid premature self-assembly of both collagen biomaterials, consumables and printhead used in the printing were pre-chilled in the freezer. After melting of LifeSupport, alginate constructs may substantially decrease in size due to the shrinking phenomenon caused by prolonged crosslinking in CaCl₂ (typically lasting 5 to 10 minutes).
 
CELL PREPARATION
Human  mesenchymal  stem  cells  (MSCs)  were used for evaluating the influence of the FRESH bioprinting  process  on  cell viability.  Cells were expanded  in 2D T175 flasks  before  bioprinting. Throughout   the   culture,   Dulbecco’s   modified eagle medium (DMEM) with high glucose (Gibco, 11965092) supplemented with 10% fetal bovine serum  (FBS,  Gibco,  10270-106)  and Antibiotic- Antimycotic (Gibco, 15240096) was used. Before bioprinting, cells in passage 28 were detached from the flask and a cell suspension was prepared with cell viability of 95%.

FRESH 3D BIOPRINTING OF MSCS
The BIO Xwas prepared by cooling theTemperature- controlled  Printhead  and  print  bed  according to  previously  described  settings.  Biomaterials were mixed with the cell suspension for a final concentration of 2 million MSCs/mL. In particular, the cells were added to TeloCol and PhotoCol using a pipette and mixed within the Eppendorf, while the addition of cells to alginate 2% (w/v) solution was done using two 3 mL syringes connected with a Luer lock. The homogeneous solutions were transferred into cartridges and capped with a 22 G 1-inch needle that was chosen as optimal for printing with cells. The following conditions were used for the BIO X bioprinting setup: STL file with cylindrical grid of 5 mm diameter and 1 mm height with one perimeter, infill = 30%, printing speed = 3.5 mm/s, pressure of 10 kPa for the TeloCol and PhotoCol, and 20 kPa for the alginate. The constructs were bioprinted into an untreated 24-well plate (VWR, 7342779) and placed in the incubator at 37°C for 30 minutes to thermally crosslink the constructs and melt the LifeSupport  bath. The  melted  LifeSupport was carefully removed by replacing it with cell culture medium to avoid damaging the printed constructs. Cell culture media were replenished three times a week during the 14-day culturing period.
 
CELL ANALYSIS
On days 1, 7 and 14 after bioprinting, the viability of the MSCs was assessed using calcein AM (Invitrogen eBioscience, 15560597) and propidium iodide (Sigma Aldrich, 81845-25mg). Cell viability was determined by fluorescent imaging of the constructs with green and red channels. Images were analyzed using ImageJ software to merge live and dead channel images. For constructs, DAPI stain (Thermo Fisher Scientific, 62248) was added on day 14. The protocol for Live and Dead Assay can be found on CELLINK’s website.
 
APPLICATION NOTE
 
Table1. Filamentthicknessobtained usingoptimized printing parameters for FRESH bioprinting.
 
Results and discussion
 
FLOW PROPERTIES AND CROSSLINKING
Rheological  tests  were  performed  to  check  the stability of the temperature-sensitive LifeSupport and collagen biomaterials and ensure satisfactory temperature control during printing. LifeSupport is  stable  up to 15°C,  showing  a  slight  decrease in   storage   modulus   above   this   temperature. TeloCol and PhotoCol both showed rapid thermal crosslinking above ≈18°C and ≈23°C, respectively (Figure 2A), indicating a need to keep them cold during  the  printing  process  to  avoid  premature collagen network formation and nozzle clogging.
Additionally,   the   final   stiffness   of   collagen biomaterials  was  assessed  (Figure  2B).  TeloCol and  PhotoCol  showed  similar  storage  modulus values of 920 kPa and 996 kPa, respectively, after thermal self-assembly at 37°C. However, PhotoCol constructs became much stiffer (ie, 1551 kPa) when they were additionally exposed to photocrosslinking after the melting of the LifeSupport bath.

FRESH BIOPRINTING PROCESS
All  biomaterials  considered  for  this  study  were successfully FRESH bioprinted with the extrusion- based   BIO  X  3D   bioprinter.  TeloCol   printing, however,  was  challenging  because  of  the  need to keep the printhead at 5°C to avoid premature self-assembly. Optimized printing parameters for the three biomaterials and their achieved filament thickness are summarized in Table 1. Fixing printing parameters,  the  filament  thickness  for  TeloCol and PhotoCol is 0.4 mm and 0.25 mm for a 22 G and 25 G needle, respectively. An excellent result given  that  the  theoretical  minimum  resolution of a filament is defined by the nozzle diameter. Regarding  the  alginate   printing,  the  filament thickness is 0.29 mm and 0.2 mm for 22 G and 25 G needles, respectively, demonstrating the possibility to print very thin features, especially with the 25 G needle. Since the relatively high pressure of 70 kPa is not recommended for printing with cells, a 22 G 1-inch needle was chosen for further bioprinting experiments with cells.
Finally, to show how FRESH helps print complex structures, a hollow artery model with a bifurcation (Figure  3A)  was  3D  printed  and  perfused. This
 
Figure 3. Complex structure of hollow artery printed with FRESH method. 
A) Hollow artery CAD model. B) Printedconstruct. C) Perfusion ofthe artery.
 
APPLICATION NOTE
model  was  chosen  because  it  is  impossible  to print without a support bath or a sacrificial ink. Utilizing FRESH printing, this hollow artery with a bifurcation was printed (Figure 3B) successfully. The construct maintained its structure, and was also perfusable demonstrating the integrity of the print (Figure 3C)
 
CELL VIABILITY AND STRETCHING
At day 1 (Figures 4A), MSCs were homogeneously distributed  in  the  printed  constructs,  indicating proper  mixing  of  biomaterials  with  cells.  Cell viability in TeloCol and PhotoCol constructs was better than in alginate, which can be attributed to the higher printing pressure used for the more viscous alginate  bioink. These  results show that

FRESH  bioprinting  could  negatively  affect  the viability  of  cells  in  viscous  bioinks  because  of the  stress  imposed  on  cells from  needle  length and  prolonged time without cell  medium during printing. On day 7 (Figure 4B), there were many MSCs stretching  in all directions  in TeloCol and PhotoCol  constructs. While  cells  in the  alginate constructs were not able to stretch and remained round, as expected for cell-neutral alginate. Day 14  images  (Figures  4C)  highlight  an  increased number  of  stretched  cells  through  the  collagen based constructs. There was however, an increased number of dead cells also observed at the center of the constructs. This increase could be attributed to a lack of oxygen and nutrients reaching these cells.
 
 
 
 
 
Figure 4. Representative images ofthe bioprinted MSCsstainedwith calceinAM (live cells) and 
propidium iodide (dead cells) atA) day 1,B) day7, and C) day14ofculture. Magnification 4x.
 
APPLICATION NOTE
Conclusion
In this study, we demonstrated the potential of FRESH method using LifeSupport for printing soft and liquid-like collagen and alginate biomaterials  using extrusion-based 3D bioprinting. In particular, the proposed method enables printing complex structures without the need for sacrificial support inks or ink modifiers to increase mechanical       stability, keeping the biological requirement of the biomaterials.

References
1.    Adamiak K, Sionkowska A. Current methods of collagen cross-linking: Review. International Journal of Biological Macromolecules. 2020; 161: 550–560. DOI:10.1016/j.ijbiomac.2020.06.075.
 
2.    Adib AA, Sheikhi A, Shahhosseini M, et al. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication. 2020; 12(4): 045006. DOI:10.1088/1758-5090/ab97a1.

3.    Hazur J, Detsch R, Karakaya E, et al. Improving alginate printability for biofabrication: Establishment of a universal and homogeneous pre crosslinking technique. Biofabrication. 2020; 12(4): 045004. DOI:10.1088/1758-5090/ab98e5.

4.    Heid S, Boccaccini AR. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomaterialia. 2020; 113: 1 –22. DOI:10.1016/j.actbio.2020.06.040.

5.    Hinton TJ, Jallerat Q, Palchesko NR, et al. Science Advances. 2015; 1(9): e1500758. DOI:10.1126/ sciadv.1500758.

6.   Jeon O, Lee Y, Hinton T, Feinberg A, Alsberg E. Cryopreserved cell laden alginate microgel bioink for 3D bioprinting of living tissues. Materials Today Chemistry. 2019; 12: 61 –70. DOI:10.1016/j.  mtchem.2018.11.009.

7.    Lee A, Hudson AR, Shiwarski DJ, et al. 3D bioprinting of collagen to rebuild components of the human heart. Science. 2019; 365: 482–487. DOI:10.1126/science.aav90.

8.   Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing  as a platform for advanced tissue biofabrication. APL Bioengineering. 2021; 5(1): 010904. DOI:10.1063/5.0032777.

9.    Wu W, DeConinck A, Lewis JA. Omnidirectional printing of 3D microvascular networks. Advanced Materials. 2011; 23(24): H178– H183. DOI:10.1002/adma.201004625.
來(lái)源:上海跡亞國(guó)際商貿(mào)有限公司
聯(lián)系電話:021-68779823
E-mail:sales@gaiachina.com.cn

用戶(hù)名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com