QSense耗散型石英晶體微天平在制藥領(lǐng)域中的應(yīng)用
瀏覽次數(shù):656 發(fā)布日期:2024-6-13
來源:本站 僅供參考,謝絕轉(zhuǎn)載,否則責(zé)任自負(fù)
QSense耗散型石英晶體微天平在制藥領(lǐng)域中的應(yīng)用
QSense 耗散型石英晶體微天平技術(shù)
耗散型石英晶體微天平(QCM-D)技術(shù)是一項(xiàng)表界面敏感且多功能的分析技術(shù),主要用于研究薄膜、生物分子相互作用以及其他與表界面相關(guān)的過程。QCM-D技術(shù)能夠提供關(guān)于分子在固體表面吸附、相互作用和穩(wěn)定性的寶貴見解。
QCM-D技術(shù)可以實(shí)時(shí)監(jiān)控石英晶體芯片的諧振頻率隨時(shí)間的變化。芯片的諧振頻率取決于其質(zhì)量,因此頻率的變化可以揭示與芯片表面耦合的質(zhì)量變化。同時(shí),還可以實(shí)時(shí)監(jiān)控系統(tǒng)的能量損失(耗散),從而量化芯片上涂層的粘彈性特性。這些頻率和耗散的變化可用于分析分子與芯片表面的相互作用。
QCM-D技術(shù)是由瑞典百歐林科技有限公司和瑞典查爾姆斯理工大學(xué)的科學(xué)家們共同開創(chuàng)的,自1999年第一臺(tái)原型機(jī)問世以來,QSense耗散型石英晶體微天平產(chǎn)品系列不斷擴(kuò)大。如今,QSense已成為石英晶體微天平儀器的世界領(lǐng)導(dǎo)者,廣泛應(yīng)用于制藥、生物技術(shù)、能源、電子、材料、食品、環(huán)境、化學(xué)、礦物加工等領(lǐng)域。數(shù)千篇文獻(xiàn)證明了QSense技術(shù)的可靠性。以下將主要探討QSense耗散型石英晶體微天平技術(shù)在藥物相互作用方面的應(yīng)用。
(一)藥物開發(fā)
QSense的納克級(jí)別質(zhì)量靈敏度為藥物發(fā)現(xiàn)和開發(fā)提供了無限潛力。通過QSense進(jìn)行的研究活動(dòng)包括:
- 各種實(shí)驗(yàn)條件下,實(shí)時(shí)精確監(jiān)測小分子藥物與蛋白質(zhì)、細(xì)胞膜和RNA的相互作用。[1]
- 蛋白質(zhì)-蛋白質(zhì)相互作用[2]
- 小分子與RNA相互作用時(shí),RNA的結(jié)構(gòu)變化[3]
(二)藥物遞送
QSense已被證明是一種成本效益高、時(shí)間效率高的技術(shù),特別適用于表征脂質(zhì)納米顆粒(LNP)及其藥物遞送特性方面。大量文獻(xiàn)證明QSense可以用于:
- 分析血清蛋白與脂質(zhì)納米顆粒(LNP)的結(jié)合親和力[4]
- 生物分子(如siRNA和mRNA)在LNP上的結(jié)合與釋放[5]
- 將LNP遞送到目標(biāo)器官[6]
- 在無細(xì)胞環(huán)境中篩選血清蛋白與LNPs的結(jié)合親和力[7]
- 分析LNPs的表面修飾[8]
- 脂質(zhì)與生物活性分子(包括藥物、DNA和siRNA)的相互作用[9]
- ApoE結(jié)合后對(duì)脂質(zhì)成分分布和整體LNP結(jié)構(gòu)的影響[24]
- 用于存儲(chǔ)功能化LNP的納米孔陣列[25]
- 提高LNPs核酸載荷遞送效率的LNP配方[26]
- 使用cDNA將微泡固定到支持的脂質(zhì)雙層上[27]
- 穩(wěn)定化立方體的嵌段共聚物與生物模擬脂質(zhì)膜的相互作用[28]
(三)藥物-表面相互作用
QSense在表征藥物配方與表面相互作用方面具有重要意義,涵蓋了生產(chǎn)、純化、儲(chǔ)存和遞送過程中的多個(gè)方面。特別是評(píng)估生物制藥藥品在整個(gè)生命周期中的表面吸附/解吸附過程以及吸附層的結(jié)構(gòu)變化。
典型案例包括:
- 藥物與聚合物、玻璃、金屬和金屬氧化物、硅油等表面的相互作用[10],[11],[12],[13],[14],[15],[16]
- 輔料在減少藥物-蛋白質(zhì)吸附到表面上的效果[17]
- 配方條件(濃度、pH值、溫度等)的影響; [18]
- 界面和界面應(yīng)力在生物制品開發(fā)中的影響[19]
藥物-表面相互作用研究用QCM-D芯片列表 |
塑料包裝 |
聚丙烯 (PP)
聚氯乙烯 (PVC)
聚對(duì)苯二甲酸乙二醇酯 (PET)
聚甲基丙烯酸甲酯 (PMMA) |
聚乙烯 (PE)
低密度聚乙烯 (LDPE)
高密度聚乙烯 (HDPE)
線性低密度聚乙烯 (LLDPE) |
玻璃容器 |
硼硅酸鹽玻璃 |
蘇打石灰玻璃 |
包裝袋 |
環(huán)烯烴聚合物 (COP) |
環(huán)烯烴共聚物 (COC) |
過濾材料 |
聚偏二氟乙烯 (PVDF)
聚四氟乙烯 (PTFE)
聚碳酸酯 (PC) |
聚醚砜 (PES)
聚對(duì)苯二甲酸乙二醇酯甘油改性 (PET-G) |
預(yù)充填注射器 |
注射器 PDMS(硅油) |
其他相關(guān)材料 |
聚苯乙烯
纖維素
不銹鋼L605
SS2343(類似于美國標(biāo)準(zhǔn)316)
乙烯-醋酸乙烯共聚物 (EVA) |
尼龍
聚氨酯
醋酸纖維素
聚丙烯腈 (PAN) * |
*注:多達(dá) 200 種芯片,可根據(jù)用戶要求定制芯片表面
(四)生物材料與人體組織的相互作用
植入體和生物材料在人體內(nèi)的生物相容性是它們成功發(fā)揮作用的關(guān)鍵。QSense提供了在分子層面對(duì)植入體表面或生物材料與人體血液和組織相互作用的體外分析。
- 各種眼部護(hù)理配方與黏蛋白/細(xì)胞膜表面的相互作用[20]。
(五)生物傳感器開發(fā)
QSense也被廣泛用于蛋白質(zhì)生物傳感器和即時(shí)檢測傳感器等類型傳感器的開發(fā)中。
- 蛋白質(zhì)生物傳感器[21],[22]
- 即時(shí)檢測傳感器(Point-of-care sensors)[23]
QSense Omni 耗散型石英晶體微天平
QSense Omni 是由QCM-D技術(shù)的先驅(qū)者瑞典百歐林科技有限公司推動(dòng)研發(fā)的最新耗散性石英晶體微天平型號(hào),是QCM-D最新技術(shù)的集大成者。Omni比市面上任何一款QCM的靈敏度都要高,這使它能夠量化和監(jiān)測更小的分子、更快的過程,是研究生物過程非常理想的工具。QSense有超過100多種芯片表面材料和涂層可供選擇,支持模擬真實(shí)生物環(huán)境和過程,以表征蛋白質(zhì)吸附速率、薄膜形成、吸附層剛性、鈣化、細(xì)胞附著等。
QSense Omni 耗散型石英晶體微天平
- 能夠檢測芯片表面微小至0.24 ng/cm²的變化
- 更快的流體交換(5倍于上代產(chǎn)品),提供更快和更清晰的樣品輸送
- 全系列自動(dòng)化功能,最小化用戶依賴性
- 更簡化的工作流程和全新直觀的軟件界面,使更廣泛的用戶可以更加容易地使用QCM-D。
參考文獻(xiàn):
[1] Small-molecule-mediated control of the anti-tumour activity and off-tumour toxicity of a supramolecular bispecific T cell engager Nat. Biomed. Eng 2024, 8 (5), 513–528. https://doi.org/10.1038/s41551-023-01147-6.
[2] Genentech – Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring Journal of Pharmaceutical Sciences 2009, 98 (9), 3108–3116.
https://doi.org/10.1002/jps.21610.
[3] Roche – Reconstitution and Functional Analysis of a Full-Length Hepatitis C Virus NS5B Polymerase on a Supported Lipid Bilayer ACS Cent. Sci. 2016, 2 (7), 456–466. https://doi.org/10.1021/acscentsci.6b00112.
[4] A Fast and Reliable Method Based on QCM-D Instrumentation for the Screening of Nanoparticle/Blood Interactions Biosensors 2023, 13 (6), 607. https://doi.org/10.3390/bios13060607.
[5] A QCM-D and SAXS Study of the Interaction of Functionalised Lyotropic Liquid Crystalline Lipid Nanoparticles with siRNA ChemBioChem 2017, 18 (10), 921–930. https://doi.org/10.1002/cbic.201600613.
[6] Helper lipid structure influences protein adsorption and delivery of lipid nanoparticles to spleen and liver Biomater. Sci. 2021, 9 (4), 1449–1463.
https://doi.org/10.1039/D0BM01609H.
[7] AstraZeneca – Screening of the binding affinity of serum proteins to lipid nanoparticles in a cell free environment Journal of Colloid and Interface Science 2022, 610, 766–774. https://doi.org/10.1016/j.jcis.2021.11.117.
[8] Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant Journal of Colloid and Interface Science 2023, 633, 511–525.
https://doi.org/10.1016/j.jcis.2022.11.059.
[9] On the interactions between RNA and titratable lipid layers: implications for RNA delivery with lipid nanoparticles Nanoscale 2024, 16 (2), 777–794.
https://doi.org/10.1039/D3NR03308B.
[10] Genentech – Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil–Water Interfaces Mol. Pharmaceutics 2021, 18 (4), 1656–1665. https://doi.org/10.1021/acs.molpharmaceut.0c01113.
[11] Bristol-Myers Squibb – Mechanistic Understanding of Protein-Silicone Oil Interactions Pharm Res 2012, 29 (6), 1689–1697.
https://doi.org/10.1007/s11095-012-0696-6.
[12] Bristol-Myers Squibb – Adsorption of polypropylene oxide-polyethylene oxide type surfactants at surfaces of pharmaceutical relevant materials: effect of surface energetics and surfactant structures Pharmaceutical Development and Technology 2019, 24 (1), 70–79. https://doi.org/10.1080/10837450.2018.1425431.
[13] Bristol-Myers Squibb – Particle Characterization for a Protein Drug Product Stored in Pre-Filled Syringes Using Micro-Flow Imaging, Archimedes, and Quartz Crystal Microbalance with Dissipation AAPS J 2017, 19 (1), 110–116.
https://doi.org/10.1208/s12248-016-9983-1.
[14] Pfizer – Engineering a ceramic piston pump to minimize particle formation for a therapeutic immunoglobulin: A combined factorial and modeling approach. J Adv Manuf & Process 2023, 5 (1), e10142.
https://doi.org/10.1002/amp2.10142.
[15] Antibody adsorption and orientation on hydrophobic surfaces Langmuir 2012, 28 (3), 1765–1774.
https://doi.org/10.1021/la203095p.
[16] AstraZeneca – The Impact of the Metal Interface on the Stability and Quality of a Therapeutic Fusion Protein Mol. Pharmaceutics 2020, 17 (2), 569–578. https://doi.org/10.1021/acs.molpharmaceut.9b01000.
[17] Janssen Pharmaceuticals (Johnson and Johnson) – Quartz Crystal Microbalance as a Predictive Tool for Drug-Material of Construction Interactions in Intravenous Protein Drug Administration Journal of Pharmaceutical Sciences 2023, 112 (12), 3154–3163. https://doi.org/10.1016/j.xphs.2023.07.019.
[18] Eli Lilly – Surface Interactions of Monoclonal Antibodies Characterized by Quartz Crystal Microbalance with Dissipation: Impact of Hydrophobicity and Protein Self-Interactions Journal of Pharmaceutical Sciences 2012, 101 (2), 519–529.
https://doi.org/10.1002/jps.22771.
[19] Bristol-Myers Squibb – Overview of the Impact of Protein Interfacial Instability on the Development of Biologic Products In Protein Instability at Interfaces During Drug Product Development; Li, J., Krause, M. E., Tu, R., Eds.; AAPS Advances in the Pharmaceutical Sciences Series; 2021; Vol. 43, pp 1–8.
https://doi.org/10.1007/978-3-030-57177-1_1.
[20] Novartis Pharma – Understanding the adsorption and potential tear film stability properties of recombinant human lubricin and bovine submaxillary mucins in an in vitro tear film model Colloids and Surfaces B: Biointerfaces 2020, 195, 111257. https://doi.org/10.1016/j.colsurfb.2020.111257.
[21] Dual-mode and Label-free Detection of Exosomes from Plasma Using an Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring Anal. Chem. 2022, 94 (5), 2465–2475. https://doi.org/10.1021/acs.analchem.1c04282.
[22] Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles Biosensors and Bioelectronics 2010, 26 (2), 575–579. https://doi.org/10.1016/j.bios.2010.07.034.
[23] Bioactivated PDMS microchannel evaluated as sensor for human CD4+ cells – The concept of a point-of-care method for HIV monitoring. Sensors and Actuators B: Chemical 2007, 123 (2), 847–855.
https://doi.org/10.1016/j.snb.2006.10.034.
[24] Apolipoprotein E Binding Drives Structural and Compositional Rearrangement of mRNA-Containing Lipid Nanoparticles. ACS Nano 2021, 15 (4), 6709–6722. https://doi.org/10.1021/acsnano.0c10064.
[25] Development of Nanopackaging for Storage and Transport of Loaded Lipid Nanoparticles. . Nano Lett. 2023, 23 (14), 6760–6767.
https://doi.org/10.1021/acs.nanolett.3c01271.
[26] Review of structural design guiding the development of lipid nanoparticles for nucleic acid delivery. Current Opinion in Colloid & Interface Science 2023, 66, 101705. https://doi.org/10.1016/j.cocis.2023.101705.
[27] QCM-D Investigations on Cholesterol–DNA Tethering of Liposomes to Microbubbles for Therapy. J. Phys. Chem. B 2023, 127 (11), 2466–2474.
https://doi.org/10.1021/acs.jpcb.2c07256.
[28] Thermo-responsive lipophilic NIPAM-based block copolymers as stabilizers for lipid-based cubic nanoparticles. Colloids and Surfaces B: Biointerfaces 2022, 220, 112884. https://doi.org/10.1016/j.colsurfb.2022.112884.