English | 中文版 | 手機(jī)版 企業(yè)登錄 | 個(gè)人登錄 | 郵件訂閱
當(dāng)前位置 > 首頁(yè) > 行業(yè)資訊 > 新品 > 日本RIBM HS-AFM超高速視頻級(jí)原子力顯微鏡上市

日本RIBM HS-AFM超高速視頻級(jí)原子力顯微鏡上市

瀏覽次數(shù):13547 發(fā)布日期:2018-10-16  來(lái)源:本站 本站原創(chuàng),轉(zhuǎn)載請(qǐng)注明出處
超高速視頻級(jí)原子力顯微鏡(Sample-Scanning High-Speed Atomic Force Microscope ,HS-AFM SS-NEX)是由日本 Kanazawa 大學(xué) Prof. Ando 教授團(tuán)隊(duì)歷經(jīng)數(shù)十年研發(fā)而成的,也是世界上臺(tái)可以達(dá)到視頻級(jí)成像的商業(yè)化原子力顯微鏡。
 
 
相較于目前市場(chǎng)上的原子力顯微鏡成像設(shè)備,HS-AFM突破了 “掃描成像速慢”的限制,掃描速度最高可達(dá) 20 frame/s,并且有 4 種掃描臺(tái)可供選擇。樣品無(wú)需特殊固定染色,不影響生物分子的活性,尤其適用于生物大分子互作動(dòng)態(tài)觀測(cè)。液體環(huán)境下直接檢測(cè),超快速動(dòng)態(tài)成像,分辨率為納米水平。探針小,適用于生物樣品;懸臂探針共振頻率高,彈簧系數(shù)小,避免了對(duì)生物樣品等的損傷。懸臂探針可自動(dòng)漂移校準(zhǔn),適用于長(zhǎng)時(shí)間觀測(cè)。采用動(dòng)態(tài)PID控制,高速掃描時(shí)仍可獲得清晰的圖像。XY軸分辨率2nm;Z軸分辨率0.5nm。
 
超高速視頻級(jí)原子力顯微鏡HS-AFM推出至今,全球已有80多位用戶,發(fā)表 SCI 文章 200 余篇,包括Science, Nature, Cell 等雜志。
 
HS-AFM超高速視頻級(jí)原子力顯微鏡應(yīng)用案例:
 
1.Video imaging of walking myosin V   實(shí)時(shí)觀察myosin V蛋白的運(yùn)動(dòng)
 
 
N. Kodera et al. Nature 468, 72 (2010). Kanazawa University
 
2.Real-space and real-time dynamics of CRISPR-Cas9   實(shí)時(shí)顯示CRISPR基因編輯
 
 
Mikihiro et al. Nature Communications, (2017). Kanazawa University

3. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale
 
 
Miyagi A, et al. Nature Nanotechnology (2016)

4. IgGs are made for walking on bacterial and viral surfaces
 
 
J Preiner, et al. Nature Communications(2014)

5. Long-tip high-speed atomic force microscopy for nanometer-scale imaging in live cells
 
 
Mikihiro Shibata, et al. Scientific Reports(2015)

6. High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin
 
 
Shibata M, et al. Nature Nanotechnology (2010)

7. Tuning crystallization pathways through sequence engineering of biomimetic polymers
 
 
Xiang Ma, et al. Nature Materials (2017)

8. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures
 
 
Yuki Suzuki, et al. Nature Communications(2015)
 
 
 
HS-AFM超高速視頻級(jí)原子力顯微鏡設(shè)備規(guī)格及配置參數(shù):
 
 
 
基本參數(shù):
 
 
SS-NEX 型可選配置:
 
 
 
已發(fā)表文獻(xiàn)(2017年):
 
1. Ando T.; "Directly watching biomolecules in action by high-speed atomic force microscopy"; Biophys. Rev. (2017)
2. Ando T.; "High-speed Atomic Force Microscopy for Observing Protein Molecules in Dynamic Action", Proceedings of SPIE 10328, Selected Papers from the 31st International Congress on High-Speed Imaging and Photonics (2017)
3. Aybeke E., Belliot G., Lemaire‐Ewing S., Estienney M., Lacroute Y., Pothier P., Bourillot E., Lesniewska, E.; "HS‐AFM and SERS Analysis of Murine Norovirus Infection: Involvement of the Lipid Rafts"; Small 13 1 (2017)
4. Cai W, Liu Z., Chen Y., Shang G.; "A Mini Review of the Key Components used for the Development of High-Speed Atomic Force Microscopy"; Science of Advanced Materials Vol. 9 Numb. 1 (2017) p.77-88
5. Colom A., Redondo-Morata L., Chiaruttini N., Roux A., Scheuring S.; "Dynamic remodeling of the dynamin helix during membrane constriction"; Proceedings of the National Academy of Sciences 114 21 (2017)
6. Dufrêne Y., Ando T., Garcia R., Alsteens D., Martinez-Martin D., Engel A., Gerber Ch., Müller D.; "Imaging modes of atomic force microscopy for application of molecular and cell biology"; Nat. Nanotechnol. 12 (2017) p.295-307
7. Harada H., Onoda A., Uchihashi T., Watanabe H., Sunagawa N., Samejima M., Igarashi K., Hayashi T.; "Interdomain flip-flop motion visualized in flavocytochrome cellobiose dehydrogenase using high-speed atomic force microscopy during catalysis"; Chemical Science (2017)
8. Karner A., Nimmervoll B., Plochberger B., Klotzsch E., Horner A., Knyazev D., Kuttner R., Winkler K., Winter L., Siligan Ch., Ollinger N., Pohl P., Preiner J.; "Tuning membrane protein mobility by confinement into nanodomains"; Nature Nanotechnology 12 3 (2017) p.260-266
9. Keya J., Inoue D., Suzuki Y., Kozai T., Ishikuro D., Kodera N., Uchihashi T., Kabir A., Endo M., Sada K., Kakugo A.; "High-Resolution Imaging of a Single Gliding Protofilament of Tubulins by HS-AFM" ; Scientific Reports 7 1 (2017)
10. Kim Y.; "An Advanced Characterization Method for the Elastic Modulus of Nanoscale Thin-Films Using a High-Frequency Micromechanical Resonator"; Materials 10 7 (2017)
11. Kim Y.; "An evaluation technique for high-frequency dynamic behavior of a sandwich microcantilever beam"; Journal of Sandwich Structures & Materials (2017)
12. Korolkov V., Baldoni M., Watanabe K., Taniguchi T., Besley E., Beton P.; "Supramolecular heterostructures formed by sequential epitaxial deposition of two-dimensional hydrogen-bonded arrays"; Nature Chemistry (2017)
13. Legrand B., Salvetat J.-P., Walter B., Faucher M., Théron D., Aimé J.-P.; "Multi-MHz micro-electro-mechanical sensors for atomic force microscopy"; Ultramicroscopy 175 (2017) p.46-57
14. Liao H.-S., Chih-Wen Yang, Hsien-Chen Ko, En-Te Hwu, Ing-Shouh Hwang; "Imaging initial formation processes of nanobubbles at the graphite–water interface through high-speed atomic force microscopy"; Applied Surface Science (2017)
15. Matsui S., Kureha T., Hiroshige S., Shibata M., Uchihashi T., Suzuki D.; "Fast Adsorption of Soft Hydrogel Microspheres on Solid Surfaces in Aqueous Solution"; Angewandte Chemie (2017)
16. Mierzwa B., Chiaruttini N., Redondo-Morata L., Moser von Filseck J., König J., Larios J., Poser I., Müller-Reichert T., Scheuring S., Roux A., Gerlich D.; "Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodeling during cytokinesis"; Nature Cell Biology (2017)
17. Miyata K., Tracey J., Miyazawa K., Haapasilta V., Spijker P., Kawagoe Y., Foster A., Tsukamoto K., Fukuma T.; "Dissolution Processes at Step Edges of Calcite in Water Investigated by High-Speed Frequency Modulation Atomic Force Microscopy and Simulation"; Nano Lett. 17 7 (2017) p.4083-4089
18. Miyazawa K., Watkins M., Shluger A., Fukuma T.; "Influence of ions on two-dimensional and three-dimensional atomic force microscopy at fluorite–water interfaces"; Nanotechnology Vol. 28 Numb. 24 (2017)
19. Mohamed M., Kobayashi A., Taoka A., Watanabe-Nakayama T., Kikuchi Y., Hazawa M., Minamoto T., Fukumori Y., Kodera N., Uchihashi T., Ando T., Wong R.; "High-Speed Atomic Force Microscopy Reveals Loss of Nuclear Pore Resilience as a Dying Code in Colorectal Cancer Cells"; ACS Nano 11 6 (2017) p.5567-5578
20. Nievergelt A., Andany S., Adams J., Hannebelle M., Fantner G.; "Components for high-speed atomic force microscopy optimized for low phase-lag"; Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM) (2017)
21. Rangl M., Rima L., Klement J., Miyagi A., Keller S., Scheuring S.; "Real-time Visualization of Phospholipid Degradation by Outer Membrane Phospholipase A using High-Speed Atomic Force Microscopy"; Journal of Molecular Biology 429 7 (2017) p.977-986
22. Ren J., Zou Q.; "High-speed dynamic-mode atomic force microscopy imaging of polymers: an adaptive multiloop-mode approach"; Beilstein J. Nanotechnol. 8 (2017) p.1563-1570
23. Ricci M., Trewby W., Cafolla C., Voïtchovsky K.; "Direct observation of the dynamics of single metal ions at the interface with solids in aqueous solutions"; Scientific Reports 7 43234 (2017)
24. Rigato A., Miyagi A., Scheuring S., Rico F.; "High-frequency microrheology reveals cytoskeleton dynamics in living cells"; Nature Physics (2017) DOI: 10.1038/NPHYS4104
25. Ruan Y., Miyagi A., Wang X., Chami M., Boudker O., Scheuring S.; "Direct visualization of glutamate transporter elevator mechanism by high-speed AFM"; PNAS 114 7 (2017) p.1584-1588
26. Sadeghian H., Herfst R., Dekker B., Winters J., Bijnagte T., Rijnbeek R.; "High-throughput atomic force microscopes operating in parallel"; Review of Scientific Instruments 88 033703 (2017)
27. Sakiyama Y., Panatala R., Lim R.; "Structural Dynamics of the Nuclear Pore Complex"; Seminars in Cell and Developmental Biology (2017)
28. Shibata M., Watanabe H., Uchihashi T., Ando T., Yasuda R.; "High-speed atomic force microscopy imaging of live mammalian cells"; Biophysics and Physicobiology Vol. 14 (2017) p.127-135
29. Terahara N., Kodera N., Uchihashi T., Ando T., Namba K., Minamino T.; "Na+-induced structural transition of MotPS for stator assembly of the Bacillus flagellar motor"; Science Advances 3 11 eaao4119 (2017)
30. Uchihashi T., Scheuring S.; "Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes"; Biochim Biophys Acta. (2017)
31. Usukura E., Narita A., Yagi A., Sakai N., Uekusa Y., Imaoka Y., Ito S., Usukura J.; "A Cryosectioning Technique for the Observation of Intracellular Structures and Immunocytochemistry of Tissues in Atomic Force Microscopy (AFM)"; Scientific Reports 7 (2017)
32. Watanabe S., Ando T.; "High-speed XYZ-nanopositioner for scanning ion conductance microscopy"; Applied Physics Letters 111 11 (2017)
33. Watanabe-Nakayama T., Kodera N., Konno H., Ono K., Teplow D., Yamada M., Ando T.; "Nano-Space Video Imaging Reveals Structural Dynamics of Fibrous Protein Assembly and Relevant Enzymes"; Biophysical Journal 112 3 (2017)
34. Zhang Y., Tunuguntla R., Choi P., Noy A.; "Real-time dynamics of carbon nanotube porins in supported lipid membranes visualized by high-speed atomic force microscopy"; Philosophical Transactions of The Royal Society B Biological Sciences 372 (2017)
35. Zhang Y., Yoshida A., Sakai N., Uekusa Y., Kumeta M., Yoshimura S.; "In vivo dynamics of the cortical actin network revealed by fast-scanning atomic force microscopy" Microscopy 20 (2017) p.272-282 
 
更多文獻(xiàn)詳見(jiàn):http://www.highspeedscanning.com/hs-afm-references.html
 
 
部分用戶列表:
相關(guān)公司:Quantum量子科學(xué)儀器貿(mào)易(北京)有限公司
聯(lián)系電話:010-85120280(聯(lián)系我時(shí),請(qǐng)說(shuō)明是在生物器材網(wǎng)了解)
E-mail:info@qd-china.com


用戶名: 密碼: 匿名 快速注冊(cè) 忘記密碼
評(píng)論只代表網(wǎng)友觀點(diǎn),不代表本站觀點(diǎn)。 請(qǐng)輸入驗(yàn)證碼: 8795
Copyright(C) 1998-2024 生物器材網(wǎng) 電話:021-64166852;13621656896 E-mail:info@bio-equip.com