適用樣本類型廣泛
可常溫保存樣本
穩(wěn)定長達14天
高質量流式分析必備
CYTOMARK公司簡介
Caltag Medsystems 是 Cytomark 的母公司,由首席執(zhí)行官 Tim Almond 博士于 2001 年創(chuàng)建。TransFix®是由英國國家衛(wèi)生服務(NHS)下屬機構 NEQAS 的醫(yī)學科學家于 20 世紀 90 年代開發(fā)的。2005 年,Tim Almond 博士推出了 Cytomark,并獲得了 NHS 許可的 TransFix®,使其易于為世界各地的臨床和科學機構使用。
什么是TransFix?
TransFix®是一種穩(wěn)定試劑,保存細胞抗原,防止細胞降解的各種標本類型的流式細胞分析。
也可用于各種標本類型,包括:腦脊液,淋巴結,骨髓,動物(小鼠、綿羊、雞、海洋生物)血液,循環(huán)腫瘤細胞,細胞游離RNA和外泌體分離。
TransFix用途廣泛——多功能穩(wěn)定劑
細胞與細胞表面抗原——穩(wěn)定細胞形態(tài)與表面抗原長達14D
核酸(細胞內核酸與ctDNA/RNA)——可穩(wěn)定樣品中循環(huán)無細胞核酸
外泌體與外泌體標志物——滿足對外泌體TEM投射檢驗的需求,并且穩(wěn)定多種外泌體microRNA(10D后也可滿足提取分析標志物)
CTC細胞——已在對腫瘤、心血管疾病與其他疾病的標志物的研究成功多天穩(wěn)定樣本,滿足大量樣本同時檢測
細胞樣本穩(wěn)定難點
1. 生物樣本中細胞隨時間降解,影響檢測質量并增加檢測人員的工作壓力
2. 高通量大樣本難以同時檢測,不同地點儀器不同時間與檢測人員間的進行測試的誤差難以消除
3. 部分產品只針對細胞抗原或核酸進行穩(wěn)定,難以滿足多種下游檢測的需求,增加多次采樣的壓力
4. 珍惜樣本采樣難度大,檢測技術要求高產生的樣本保存時間與無法及時檢測的矛盾
外泌體研究中血小板隨時間釋放外泌體與短片段靶標易降解的難點
為什么要選擇TransFix——獨特優(yōu)勢
TransFix比其他細胞固定與穩(wěn)定產品相比較有著無法替代的多種優(yōu)勢
1.TransFix可適用于多種樣品,并根據您不同的下游試驗需求調整用量(詳情請參照廠家的使用指南)
可適用于:
* 全血樣品(包括表面抗原、紅細胞、血小板、CTC細胞與ctDNA/RNA等)
* CSF腦脊液
* 骨髓樣本及其他細針吸出樣本
* 肺泡灌洗液
* 間充質干細胞與胚胎細胞
* 其他文獻中應用的動物及組織等樣本
2. TransFix在2-8℃下可保存全血樣本14天,常溫保存細胞長達3-5天
3. TransFix不僅可以保存細胞與表面抗原,在與不同科學家合作中開發(fā)了其更多的用途
* 減少細胞與細胞表面抗原的降解
* 穩(wěn)定全血樣本中血小板與外泌體包含多種外泌體microRNA生物靶標
* 穩(wěn)定CTC細胞與ctDNA/RNA
* 穩(wěn)定細胞或樣本中核酸(qpcr前需要提取核酸后再進行)
TransFix應用場景
全血樣本的 14 天流式細胞對比分析
白細胞亞群是根據它們的光散射譜和細胞表面抗原通過流式細胞儀區(qū)分的。這些亞群的數量變化使血液系統(tǒng)惡性腫瘤(如白血病)的鑒別診斷和監(jiān)測成為可能,并使艾滋病毒/艾滋病患者的遠程免疫監(jiān)測成為可能。
傳統(tǒng)采血管采集樣本后必須在靜脈穿刺后 48 小時內對血液樣本進行流式細胞分析。且在老年血液樣本表現(xiàn)出難以區(qū)分的細胞亞群和不準確的絕對細胞計數,這可能導致錯誤的臨床結果。
而采用含有 Trans Fix 的真空采血管進行樣本采集與貯存后,可以看到 14天后的流式細胞分析結果仍呈現(xiàn)準確的細胞亞群統(tǒng)計結果。
與新鮮血液相比 TVTs 在第 15 天顯示等效的白細胞譜
TVT 穩(wěn)定的血液樣本在第 15 天顯示出與采用流式細胞術金標準采樣管(BD K3EDTA 真空采血管)新鮮血液樣本有相似的白細胞譜,細胞碎片水平低,CD3, CD4, CD8, CD16+56, CD45 和 CD19 群體分離良好,平均熒光強度與新鮮血液相似,使白細胞亞群分離清楚。以下數據展示使用該等標記之 HIV患者的流式細胞術點圖。
相關文獻
1. Lysák et al (2010) Interlaboratory variability of CD34+ stem cell enumeration. A pilot study to national external quality assessment within the Czech Republic. Int. Jnl. Lab. Hem. 32, e229–e236. https://doi.org/10.1111/j.1751-553X.2010.01244.x
2. Levering et al. (2007) Flow Cytometric CD34+ Stem Cell Enumeration: Lessons from Nine Years’ External Quality Assessment Within the Benelux Countries. Cytometry Part B (Clinical Cytometry) 72B: 178–188. https://doi.org/10.1002/cyto.b.20351
3. Thastrup et al. (2019) Flow cytometric detection of leukemic blasts in cerebrospinal fluid predicts risk of relapse in childhood acute lymphoblastic leukemia: a Nordic Society of Pediatric Hematology and Oncology study. Leukemia 34: 336–346. https://doi.org/10.1038/s41375-019-0570-1
4. Levinsen et al (2016) Leukemic blasts are present at low levels in spinal fluid in one-third of childhood acute lymphoblastic leukemia cases. Pediatr Blood Cancer 63; 1935–1942. https://doi.org/10.1002/pbc.26128
5. Beiral et al. (2014) The impact of stem cells on electron fluxes, proton translation, and ATP synthesis in kidney mitochondria after ischemia/reperfusion. Cell Transplant 23(2): 207-20. https://doi.org/10.3727/096368912X659862
6. Harrison D, Ward R, Bastow S, Parr A, Macro S, and Wallace PK. Interlaboratory Comparison of the TransFix®/EDTA Vacuum Blood Collection Tube with the 5 mL Cyto‐Chex® BCT. Cytometry Part B 2018; 9999: 1–12.
7. Leligdowicz et al. Direct Relationship between Virus Load and Systemic Immune Activation in HIV-2 Infection. J Infect Dis 201 (1): 114-122. https://doi.org/10.1086/648733
8. Olivares et al. (2014) Double Blind, Randomised, Placebo-Controlled Intervention Trial to Evaluate the Effects of Bifido Longum CECT 7347 in Children with Newly Diagnosed Coeliac Disease. British Journal of Nutrition 112 (1); 30-40. https://doi.org/10.1017/S0007114514000609
9. Poirier et al. (2016) First-in-Human Study in Healthy Subjects with FR104, a Pegylated Monoclonal Antibody Fragment Antagonist of CD28. J Immunol 197(12): 4593-4602. https://doi.org/10.4049/jimmunol.1601538
10. de Jongste AH, Kraan J, van den Broek PD, Brooimans RA, Bromberg JE, van Montfort KA, Smitt PAS, and Gratama JW. Use of TransFix™ Cerebrospinal Fluid Storage Tubes Prevents Cellular Loss and Enhances Flow Cytometric Detection of Malignant Hematological Cells After 18 Hours of Storage. Cytometry Part B 2014; 86B: 272– 279. https://doi.org/10.1002/cyto.b.21097
11. Kaenzig et al. Evaluation of TransFix/EDTA CSF Sample Storage Tubes compared to alternative preservation methods (Caltag Medsystems Ltd 2022- unpublished)
12. Johansson U, Bloxham D, Couzens S, Jesson J, Morilla R, Erber W, and Macey M. (2014). Guidelines on the use of multicolour flow cytometry in the diagnosis of haematological neoplasms. British Journal of Haematology, 165, 455–488.
13. Baraniskin A, Deckert M, Schulte-Altedorneburg G, Schlegel U, Schroers R. Current strategies in the diagnosis of diffuse large B-cell lymphoma of the central nervous system. Br J Haematol. 2012 Feb;156(4):421-32. doi: 10.1111/j.1365-2141.2011.08928
14. Del Principe MI, Gatti A, Johansson U, Buccisano F, Brando B. ESCCA/ISCCA protocol for the analysis of cerebrospinal fluid by multiparametric flow‐cytometry in hematological malignancies. Cytometry. 2020; 1– 13. https://doi.org/10.1002/cyto.b.21981
15. Peñalver FJ, Sancho JM, de la Fuente A, Olave MT, Martín A, Panizo C, Pérez E, Salar A, Orfao A. Guidelines for diagnosis, prevention and management of central nervous system involvement in diffuse large B-cell lymphoma patients by the Spanish Lymphoma Group (GELTAMO). Haematologica 2017;102(2):235-245; https://doi.org/10.3324/haematol.2016.149120
16. Quijano S, López A, Manuel Sancho J, Panizo C, Debén G, Castilla C, Antonio García-Vela J, Salar A, Alonso-Vence N, González-Barca E, Peñalver FJ, Plaza-Villa J, Morado M, García-Marco J, Arias J, Briones J, Ferrer S, Capote J, Nicolás C, Orfao A; Spanish Group for the Study of CNS Disease in NHL. Identification of leptomeningeal disease in aggressive B-cell non-Hodgkin’s lymphoma: improved sensitivity of flow cytometry. J Clin Oncol. 2009 Mar 20;27(9):1462-9. doi: 10.1200/JCO.2008.17.7089.
17. Correia RP, Bortolucci ACA, Lopes ACW, Sandes AF, Azambuja AP, Viana MA, et al. Recommendations for quality assurance in multiparametric flow cytometry: first concensus of the Brazilian Group of Flow Cytometry (GBCFLUX). J. Bras. Patol. Med. Lab.2015;51(6):389-396 https://doi.org/10.5935/1676-2444.20150061
18. Kraan J, Gratama JW, Haioun C, Orfao A, Plonquet A, Porwit A, Quijano S, Stetler-Stevenson M, Subira D and Wilson W. (2008), Flow Cytometric Immunophenotyping of Cerebrospinal Fluid. Current Protocols in Cytometry, 45: 6.25.1-6.25.16. https://doi.org/10.1002/0471142956.cy0625s45
Campos A, Trujillo L, López D, Beltrán L, Arias E, Vélez G, Infante A, Reyes I, Vizcaíno M, Guzmán P C, Herrera MV, Solano J, Londono D, Cañas A, Pretelt F, Pérez JC, Cardozo C, Fiorentino S, and Quijano, S. (2017). Study of body fluid samples using flow cytometry: Six years of experience at the Hospital Universitario San Ignacio – Pontificia Universidad Javeriana, Bogota – Colombia. Universitas Scientiarum (2017). 22. 123-143. 10.11144/Javeriana.SC22-2.sobf.