“冷熱” 腫瘤如何劃分?根據(jù)腫瘤微環(huán)境中免疫細(xì)胞的空間分布情況,將腫瘤分為三種基本的免疫表型:免疫炎癥型、免疫排斥型和免疫沙漠型。其中免疫炎性腫瘤即為 “熱腫瘤”,免疫排斥瘤和免疫沙漠瘤皆可稱為 “冷腫瘤”。
簡單來講,“冷”腫瘤缺乏先天免疫,而在“熱” 腫瘤中,免疫細(xì)胞較為活躍,其內(nèi)環(huán)境也被大量的 T 細(xì)胞所浸潤。
圖 3. NK-DC 細(xì)胞互相干擾[15] 。
NK 細(xì)胞被靶腫瘤細(xì)胞或細(xì)胞因子激活后,會產(chǎn)生 IFN-γ 和腫瘤壞死因子 (TNF)-α,從而促進(jìn) DC 成熟。DC 的成熟也強(qiáng)烈依賴于 NK 細(xì)胞上激活受體(例如 NKp30 和 NKG2D)的參與。成熟的 DC (mDC) 反過來會產(chǎn)生白細(xì)胞介素 (IL)-12、IL-15 和 IL-18,增強(qiáng) NK 細(xì)胞的細(xì)胞毒性和 IFN-γ 分泌。NK細(xì)胞還可以通過激活 NKp30 和抑制性殺傷細(xì)胞免疫球蛋白樣受體以及 NKG2A/CD94 來區(qū)分未成熟(iDC)和 mDC 并消除未成熟 DC(iDC),從而維持 mDC 群體的質(zhì)量(DC editing)。漿細(xì)胞樣 DC (pDC) 分泌的 IFN-α 可以進(jìn)一步增強(qiáng) NK 細(xì)胞的細(xì)胞毒性。NK 誘導(dǎo)的腫瘤細(xì)胞裂解提供抗原,該抗原可以被 DC 吸收用于抗原呈遞。一旦成熟,負(fù)載抗原的 mDC 將遷移到腫瘤引流淋巴結(jié),將腫瘤抗原交叉呈遞給初始 T 細(xì)胞,并誘導(dǎo)其分化為腫瘤特異性 CD8+ 細(xì)胞毒性 T 細(xì)胞和 CD4+ T 輔助 1 (Th1) 細(xì)胞。
以上的治療方法中溶瘤病毒療法以及腫瘤疫苗是被認(rèn)為具有強(qiáng)大抗癌活性的新興療法。
:溶瘤病毒療法
溶瘤病毒療法不僅能夠選擇性的使腫瘤溶解外,而且通過溶瘤病毒裂解腫瘤細(xì)胞而誘導(dǎo)釋放的 TAA、PAMP、DAMP 等可以激活體內(nèi)的先天性和適應(yīng)性免疫反應(yīng),改變腫瘤的免疫微環(huán)境使冷腫瘤變?yōu)闊崮[瘤[23]。在實(shí)際的應(yīng)用中,T-VEC 就被證實(shí)是可以有效治療黑色素瘤的溶瘤病毒[24]。臨床上聯(lián)合應(yīng)用帕博利珠單抗能增加黑色素瘤患者的 CD8+ 細(xì)胞浸潤及活化[25]。
:腫瘤疫苗
腫瘤疫苗則可以擴(kuò)大特異性 T 細(xì)胞的數(shù)量,增加 T 細(xì)胞向腫瘤區(qū)域的運(yùn)輸[26]。在一項(xiàng)針對晚期惡性黑色素瘤、NSCLC 和膀胱癌患者的 Ib 臨床試驗(yàn)中,個(gè)體化新抗原疫苗 NEO-PV-01 與 nivolumab 的聯(lián)合就顯著延長了無進(jìn)展生存期,并觀察到特異性T細(xì)胞向腫瘤區(qū)域的運(yùn)輸及浸潤[27]。但無論是哪種治療,最后都離不開腫瘤機(jī)制的探索,每一種機(jī)制的發(fā)現(xiàn)都會為我們的腫瘤治療帶來指導(dǎo)性的意義。
▐ MedChemExpressMCE 可提供 20,000+ 個(gè)用于腫瘤研究的相關(guān)產(chǎn)品及試劑,其中也包括腫瘤免疫微環(huán)境相關(guān)產(chǎn)品。
BIO8898 BIO8898 是一種有效的 CD40-CD154 抑制劑。BIO8898 抑制可溶性 CD40L 與 CD40-Ig 的結(jié)合, IC50 值為 25 µM。BIO8898 抑制 CD40L 誘導(dǎo)的細(xì)胞凋亡。 |
Mitazalimab Mitazalimab (ADC-1013; JNJ-64457107) 是 FcγR 依賴性 CD40 激動劑,具有腫瘤導(dǎo)向活性。Mitazalimab 激活抗原呈遞細(xì)胞,例如 樹突狀細(xì)胞 (DC),以啟動腫瘤反應(yīng)性 T 細(xì)胞。因此,Mitazalimab 誘導(dǎo)腫瘤特異性 T 細(xì)胞浸潤并殺死腫瘤。Mitazalimab 可重塑腫瘤浸潤性骨髓微環(huán)境。 |
TGFβ1-IN-1 TGFβ1-IN-1 (compound 42) 是一種有效的、具有口服活性的 TGF-β1 抑制劑。TGFβ1-IN-1 可以抑制 TGF-β1 誘導(dǎo)的纖維化標(biāo)志物(α-SMA 和纖連蛋白)的上調(diào),可用于肝纖維化疾病研究。 |
SRI-011381 hydrochloride SRI-011381 hydrochloride 是一種有具有口服生物活性的 TGF-β 信號通路的激活劑,具有神經(jīng)保護(hù)作用。 |
PD-1-IN-18 PD-1-IN-18 是 PD1 信號通路抑制劑,是一種免疫調(diào)節(jié)劑。 |
CL845 CL845 是 STING 激動劑 CL656 (HY-112878) 的類似物。CL845 可用于合成靶向 STING(干擾素基因刺激物)的可結(jié)合 PRR 配體。CL845 可用于癌癥、免疫系統(tǒng)疾病或感染的研究。 |
MCE的所有產(chǎn)品僅用作科學(xué)研究或藥證申報(bào),我們不為任何個(gè)人用途提供產(chǎn)品和服務(wù)。
[1] Yuan-Tong Liu, et al. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics. 2021 Mar 11;11(11):5365-5386.
[2] Tumeh PC, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–571.
[3] Mi Y, et al. The emerging role of myeloid-derived suppressor cells in the glioma immune suppressive microenvironment. Front Immunol. 2020;11:737.
[4] Bonaventura P, et al. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front Immunol. 2019 Feb 8;10:168.
[5] Wallich R, et al. Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection. Nature. 1985;315(6017):301–305.
[6] Peng W, Chen JQ, Liu C, et al. Loss of PTEN Promotes Resistance to T Cell-Mediated Immunotherapy. Cancer Discov. 2016;6(2):202-216.
[7] Zhu S, et al. Tumor microenvironment-related dendritic cell deficiency: a target to enhance tumor immunotherapy. Pharmacol Res. 2020 Sep;159:104980.
[8] Vacchelli E, et al.. Chemotherapy-induced antitumor immunity requires formyl peptide receptor 1. Science (2015) 350:972–8.
[9] Mariathasan S, et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554(7693):544-548.
[10] Toso A, et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. (2014) 9:75–89.
[11] Randolph GJ, et al. Migration of dendritic cell subsets and their precursors. Annu Rev Immunol. 2008;26:293-316.
[12] Hojo S, et al. High-level expression of chemokine CXCL16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Res. 2007;67(10):4725-4731.
[13] Montoya M, et al. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood (2002) 99:3263–3271.
[14] Srivastava P, et al. Immunomodulatory action of SGI-110, a hypomethylating agent, in acute myeloid leukemia cells. Leuk Res. (2014) 38:1332.
[15] Zhang C, et al. Chimeric antigen receptor-engineered NK-92 cells: an off-the-shelf cellular therapeutic for targeted elimination of cancer cells and induction of protective antitumor immunity. Front Immunol. (2017) 8:533.
[16] Golden EB, et al. Radiotherapy and immunogenic cell death. Semin Radiat Oncol. 2015;25(1):11-17.
[17] Ribas A, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy [published correction appears in Cell. 2018 Aug 9;174(4):1031-1032]. Cell. 2017;170(6):1109-1119.e10.
[18] Bevers RFM, et al. Role of urothelial cells in BCG immunotherapy for superficial bladder cancer. Br J Cancer (2004) 91:607–12.
[19] Khong A, et al. The use of agonistic anti-CD40 therapy in treatments for cancer. Int Rev Immunol. (2012) 31:246–66.
[20] Ott PA, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature (2017) 547:217–221.
[21] Shrimali RK, et al. Antiangiogenic agents can increase lymphocyte infiltration into tumor and enhance the effectiveness of adoptive immunotherapy of cancer. Cancer Res. 2010;70(15):6171-6180.
[22] Klein C, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines.
Oncoimmunology (2017) 6:e1277306.
[23] Russell L, et al. Oncolytic Viruses: Priming Time for Cancer Immunotherapy. Biodrugs. 2019;33:485-501
[24] Andtbacka R, et al. Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma. J Clin Oncol. 2015;33:2780-8
[25] Ribas A, et al. Oncolytic Virotherapy Promotes Intratumoral T Cell Infiltration and Improves Anti-PD-1 Immunotherapy. Cell. 2017;170:1109-19.e10
[26] van der Burg SH, et al. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer. 2016;16:219-33.
[27]Ott P, Hu-Lieskovan S, Chmielowski B, et al. A Phase Ib Trial of Personalized Neoantigen Therapy Plus Anti-PD-1 in Patients with Advanced Melanoma, Non-small Cell Lung Cancer, or Bladder Cancer. Cell. 2020;183:347-62.e24